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Abstract
Asymmetric distributed constraint optimization
problems (ADCOPs) are an emerging model for co-
ordinating agents with personal preferences. How-
ever, the existing inference-based complete algo-
rithms which use local eliminations cannot be ap-
plied to ADCOPs, as the parent agents are required
to transfer their private functions to their children.
Rather than disclosing private functions explicitly
to facilitate local eliminations, we solve the prob-
lem by enforcing delayed eliminations and propose
AsymDPOP, the first inference-based complete al-
gorithm for ADCOPs. To solve the severe scala-
bility problems incurred by delayed eliminations,
we propose to reduce the memory consumption by
propagating a set of smaller utility tables instead
of a joint utility table, and to reduce the computa-
tion efforts by sequential optimizations instead of
joint optimizations. The empirical evaluation in-
dicates that AsymDPOP significantly outperforms
the state-of-the-art, as well as the vanilla DPOP
with PEAV formulation.

1 Introduction
Distributed constraint optimization problems (DCOPs) [Modi
et al., 2005; Fioretto et al., 2018] are a fundamental frame-
work in multi-agent systems where agents coordinate their
decisions to optimize a global objective. DCOPs have been
adopted to model many real world problems including ra-
dio frequency allocation [Monteiro et al., 2012], smart grid
[Fioretto et al., 2017] and distributed scheduling [Mah-
eswaran et al., 2004b; Li et al., 2016].

Most of complete algorithms for DCOPs employ either
distributed search [Hirayama and Yokoo, 1997; Modi et al.,
2005; Gershman et al., 2009; Yeoh et al., 2010] or inference
[Petcu and Faltings, 2005b; Vinyals et al., 2011] to optimally
solve DCOPs. However, since DCOPs are NP-hard, complete
algorithms cannot scale up due to exponential overheads.
Thus, incomplete algorithms [Maheswaran et al., 2004a;
Zhang et al., 2005; Okamoto et al., 2016; Rogers et al., 2011;
Zivan and Peled, 2012; Chen et al., 2018; Ottens et al., 2017;
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Fioretto et al., 2016] are proposed to trade optimality for
smaller computational efforts.

Unfortunately, DCOPs fail to capture the ubiquitous asym-
metric structure [Burke et al., 2007; Maheswaran et al.,
2004b; Ramchurn et al., 2011] since each constrained agent
shares the same payoffs. PEAV [Maheswaran et al., 2004b]
attempts to capture the asymmetric costs by introducing mir-
ror variables and the consistency is enforced by hard con-
straints. However, PEAV suffers from scalability problems
since the number of variables significantly increases. More-
over, many classical DCOP algorithms perform poorly when
applied to the formulation due to the presence of hard con-
straints [Grinshpoun et al., 2013]. On the other side, AD-
COPs [Grinshpoun et al., 2013] are another framework that
captures asymmetry by explicitly defining the exact payoff
for each participant of a constraint without introducing any
variables, which has been intensively investigated in recent
years.

Solving ADCOPs involves evaluating and aggregating the
payoff for each constrained agent, which is challenging in
asymmetric settings due to a privacy concern. SyncABB and
ATWB [Grinshpoun et al., 2013] are asymmetric adaption of
SyncBB [Hirayama and Yokoo, 1997] and AFB [Gershman
et al., 2009], using an one-phase strategy to aggregate the in-
dividual costs. That is, the algorithms systematically check
each side of a constraint before reaching a complete assign-
ment. Besides, AsymPT-FB [Litov and Meisels, 2017] is the
first tree-based algorithm for ADCOPs, which uses forward
bounding to compute lower bounds and back bounding to
achieve one-phase check. Recently, PT-ISABB [Deng et al.,
2019] was proposed to improve the tree-based search by im-
plementing a non-local elimination version of ADPOP [Petcu
and Faltings, 2005a] to provide much tighter lower bounds.
However, since it relies on an exhaustive search to guaran-
tee the optimality, the algorithm still suffers from exponential
communication overheads. On the other hand, although com-
plete inference algorithms (e.g., DPOP [Petcu and Faltings,
2005b]) only require a linear number of messages to solve
DCOPs, they cannot be directly applied to ADCOPs with-
out PEAV due to their requirement for complete knowledge
of each constraint to facilitate variable elimination. Accord-
ingly, the parents have to transfer their private cost functions
to their children, which leaks at least a half of privacy.

In this paper, we adapt DPOP for solving ADCOPs for the
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first time by deferring the eliminations of variables. Specif-
ically, we contribute to the state-of-the-art in the following
aspects.
• We propose AsymDPOP, the first complete inference-

based algorithm to solve ADCOPs, by generalizing non-
local elimination [Deng et al., 2019]. That is, instead of
eliminating variables at their parents, we postpone the
eliminations until their highest neighbors in the pseudo
tree. In other words, an agent in our algorithm may be
responsible for eliminating several variables.
• We theoretically analyze the complexity of our algo-

rithm where the space complexity of an agent is not only
exponential in the number of its separators but also the
number of its non-eliminated descendants.
• We scale up our algorithm by introducing a table-set

propagation scheme to reduce the memory consumption
and a mini-batch scheme to reduce the number of op-
erations when performing eliminations. Our empirical
evaluation indicates that our proposed algorithm signif-
icantly outperforms the state-of-the-art, as well as the
vanilla DPOP with PEAV formulation.

2 Backgrounds
In this section we introduce the preliminaries including
DCOPs, ADCOPs, pseudo tree, DPOP and non-local elim-
ination.

2.1 Distributed Constraint Optimization Problems
A distributed constraint optimization problem [Modi et al.,
2005] is defined by a tuple 〈A,X,D, F 〉 where
• A = {a1, . . . , an} is the set of agents
• X = {x1, . . . , xm} is the set of variables
• D = {D1, . . . , Dm} is the set of domains. Variable xi

takes values from Di

• F = {f1, . . . , fq} is the set of constraint functions. Each
function fi : Di1 × · · · ×Dik → R≥0 specifies the cost
assigned to each combination of xi1, . . . , xik.

For the sake of simplicity, we assume that each agent con-
trols a variable (and thus the term ”agent” and ”variable”
could be used interchangeably) and all constraint functions
are binary (i.e., fij : Di × Dj → R≥0). A solution to a
DCOP is an assignment to all the variables such that the total
cost is minimized. That is,

X∗ = argmin
di∈Di,dj∈Dj

∑
fij∈F

fij(xi = di, xj = dj)

2.2 Asymmetric Distributed Constraint
Optimization Problems

While DCOPs assume an equal payoff for each participant of
each constraint, asymmetric distributed constraint optimiza-
tion problems (ADCOPs) [Grinshpoun et al., 2013] explicitly
define the exact payoff for each constrained agent. In other
words, a constraint function fi : Di1×· · ·×Dik → Rk

≥0 in an
ADCOP specifies a cost vector for each possible combination

 

Figure 1: An ADCOP with two variables and a constraint

 

Figure 2: A pseudo tree

of involved variables. And the goal is to find a solution which
minimizes the aggregated cost. An ADCOP can be visualized
by a constraint graph where the vertexes denote variables and
the edges denote constraints. Fig. 1 presents an ADCOP with
two variables and a constraint. Besides, for the constraint be-
tween xi and xj , we denote the private function for xi and xj

as fij and fji, respectively.

2.3 Pseudo Tree
A pseudo tree [Freuder and Quinn, 1985] is an ordered ar-
rangement to a constraint graph in which different branches
are independent. A pseudo tree can be generated by a depth-
first traverse to a constraint graph, categorizing constraints
into tree edges and pseudo edges (i.e., non-tree edges). The
neighbors of an agent ai are therefore categorized into its
parent P (ai), pseudo parents PP (ai), children C(ai) and
pseudo children PC(ai) according to their positions in the
pseudo tree and the types of edges they connect through.
We also denote its parent and pseudo parents as AP (ai) =
P (ai) ∪ PP (ai), and its descendants as Desc(ai). Besides,
we denote its separators, i.e., the set of ancestors which are
constrained with ai and its descendants, as Sep(ai) [Petcu
and Faltings, 2006]. Finally, we denote ai’s interface de-
scendants, the set of descendants which are constrained with
Sep(ai), as ID(ai). Fig. 2 presents a pseudo tree in which
the dotted edge is a pseudo edge.

2.4 DPOP and Non-local Elimination
DPOP [Petcu and Faltings, 2005b] is an inference-based
complete algorithm for DCOPs based on bucket elimination
[Dechter, 1999]. Given a pseudo tree, it performs a bottom-
up utility propagation phase to eliminate variables and a value
propagation phase to assign the optimal assignment for each
variable. More specifically, in the utility propagation phase,
an agent ai eliminates its variables from the joint utility table
by computing the optimal utility for each possible assignment
to Sep(ai) after receiving the utility tables from its children,
and sends the projected utility table to its parent. In the value
propagation phase, ai computes the optimal assignments for
its variables by considering the assignments received from its
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Algorithm 1: GNLE for ai
When Initialization:

1 utili ← ⊗
aj∈AP (ai)

fij

2 if ai is a leaf then
3 send UTIL(utili) to P (ai)

When received UTIL(utilc) from ac ∈ C(ai):
4 utilci ← utilc
5 foreach aj ∈ (PC(ai) ∩Desc(ac)) ∪ {ac} do
6 utilci ← utilci ⊗ fij
7 utili ← utili ⊗ min

EV (ai,ac)
utilci

8 if ai has received all UTIL from C(ai) then
9 if ai is the root then

10 start Value Propagation phase
11 else
12 send UTIL(utili) to P (ai)

parent, and propagates the joint assignment to its children.
Although DPOP only requires a linear number of messages
to solve a DCOP, its memory consumption is exponential in
the induced width. Thus, several tradeoffs including ADPOP
[Petcu and Faltings, 2005a], MB-DPOP [Petcu and Faltings,
2007] and ODPOP [Petcu and Faltings, 2006] have been pro-
posed to improve its scalability.

However, DPOP cannot be directly applied to asymmetric
settings as it requires the total knowledge of each constraint to
perform optimal elimination locally. PT-ISABB [Deng et al.,
2019] applies (A)DPOP into solving ADCOPs by performing
variable elimination only to a subset of constraints to build
look-up tables for lower bounds, and uses a tree-based search
to guarantee the optimality. The algorithm further reinforces
the bounds by a non-local elimination scheme. That is, in-
stead of performing elimination locally, the elimination of a
variable is postponed to its parent to include the private func-
tion enforced in the parent’s side and increase the integrity of
the utility table.

3 Asymmetric DPOP
The existing complete algorithms for ADCOPs use complete
search to exhaust the search space, which makes them un-
suitable for large scale applications. In fact, as shown in
our experimental results, these search-based algorithms can
only solve the problems with the agent number less than
20. Hence, in this section, we propose a complete, privacy-
protecting, and scalable inference-based algorithm for AD-
COPs built upon generalized non-local elimination, called
AsymDPOP. An execution example can be found in the ap-
pendix (https://arxiv.org/abs/1905.11828).

3.1 Utility Propagation Phase
In DPOP, a variable could be eliminated locally without loss
of completeness after receiving all the utility messages from
its children since all functions that involve the variable have
been aggregated. However, the conclusion does not hold for
ADCOPs. Taking Fig. 2 as an example, x4 cannot be elim-
inated locally since the private functions f14 and f24 are not
given. Thus, the local elimination to x4 w.r.t. f41 and f42
would lead to overestimate bias and offer no guarantee on
the completeness. A naı̈ve solution would be that x1 and x2

transfer their private functions to their children, which would
lead to an unacceptable privacy loss.

Inspired by non-local elimination, we consider an alterna-
tive privacy-protecting approach to aggregate constraint func-
tions. That is, instead of deferring to its parent, we postpone
the elimination of a variable to its highest (pseudo) parent. In
this way, all the functions involving the variables have been
aggregated and the variable can be eliminated from the util-
ity table optimally. Note that the utility table is a summation
of the utility tables from children and local constraints. As a
result, although the utility table which contains the variable’s
private functions is propagated to its ancestors without elim-
ination, the ancestors can hardly infer the exact payoffs in
these private functions. We refer the bottom-up utility propa-
gation phase as generalized non-local elimination (GNLE).

Before diving into the details of GNLE, let’s first consider
the following definitions.
Definition 1 (dims). The dims(·) is a function which returns
the set of dimensions of a utility table.
Definition 2 (Slice). Let S be a set of key-value pairs. S[K]

is a slice of S over K such that
S[K] = {(k = v) ∈ S|k ∈ K}

Definition 3 (Join [Vinyals et al., 2011]). Let U,U ′ be
two utility tables and DU = ×xi∈dims(U)Di, DU ′ =
×xi∈dims(U ′)Di be their joint domain spaces. U ⊗ U ′ is the
join of U and U ′ over DU⊗U ′ = ×xi∈dims(U)∪dims(U ′)Di

such that
(U⊗U ′)(V ) = U(V[dims(U)])+U ′(V[dims(U ′)]), ∀V ∈ DU⊗U ′

Algorithm 1 presents the sketch of GNLE. The algorithm
begins with leaf agents sending their utility tables to their par-
ents via UTIL messages (line 2-3). When an agent ai receives
a UTIL message from a child ac, it joins its private functions
w.r.t. its (pseudo) children in branch ac (line 5-6), and elimi-
nates all the belonging variables whose highest (pseudo) par-
ents are ai from the utility table (line 7). Here, EV (ai, ac) is
given by

EV (ai, ac) = PC(ai) ∩Desc(ac) ∪ {ac}\ID(ai)

Then ai joins the eliminated utility table with its running util-
ity table utili. It is worth mentioning that computing the set
of elimination variables EV (ai, ac) does not require agents
to exchange their relative positions in a pseudo tree. Specif-
ically, each variable is associated with a counter which is
initially set to the number of its parent and pseudo parents.
When its (pseudo) parent receives the UTIL message con-
taining it, the counter decreases. And the variable is added to
the set of elimination variables as soon as its counter equals
zero.

After receiving all the UTIL messages from its children, ai
propagates the utility table utili to its parent if it is not the
root (line 12). Otherwise, the value propagation phase starts
(line 10).

3.2 Value Propagation Phase
In contrary to the one in vanilla DPOP which determines the
optimal assignment locally for each variable, the value as-
signment phase in AsymDPOP should be specialized to ac-
commodate the non-local elimination. Specifically, since a
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Algorithm 2: Value Propagation for ai
When Initialization:

13 if ai is the root then
14 v∗i ← argmin

xi

utili

15 PropagateValue({(xi = v∗i )})
When received VALUE(Assign) from P (ai):

16 PropagateValue(Assign)
Function PropagateValue(Assign):

17 foreach ac ∈ C(ai) do
18 Assignc

i ← Assign[Sep(ac)∪{ac}∪ID(ac)]

19 if EV (ai, ac) 6= ∅ then
20 V ∗ ← argmin

EV (ai,ac)

utilci (Assign[dims(utilc
i
)])

21 Assignc
i ← Assignc

i ∪ {(xj = V ∗[xj ]
)|∀xj ∈

EV (ai, ac)}
22 send VALUE(Assignc

i ) to ac

 

Figure 3: A chain-like pseudo tree

variable is eliminated at its highest (pseudo) parent, the par-
ent is responsible for selecting the optimal assignment for that
variable. Thus, the value messages in our algorithm would
contain not only the assignments for ancestors, but also as-
signments for descendants. Algorithm 2 presents the sketch
of value propagation phase.

The phase is initiated by the root agent selecting the opti-
mal assignment (line 14). Given the determined assignments
either from its parent (line 16) or computed locally (line 15),
agent ai selects the optimal assignments for the eliminated
variables in each branch ac ∈ C(ai) by a joint optimization
over them (line 17-20), and propagates the assignments to-
gether with the determined assignments to ac (line 21-22).
The algorithm terminates when each leaf agent receives a
VALUE message.

3.3 Complexity Analysis
Theorem 1. The size of a UTIL message produced by an
agent is exponential in the number of its separator and its
interface descendants.

Proof. We prove the theorem by showing a UTIL message
produced by agent ai contains the dimensions of Sep(ai) and
ID(ai) ∪ {ai}. The UTIL message must contain the dimen-
sions of ID(ai) ∪ {ai} since ai is not the highest (pseudo)
parent of aj , ∀aj ∈ ID(ai) ∪ {ai}. On the other hand, ac-
cording to the definition to ID(ai), the UTIL message can-
not contain the dimensions of Desc(ai)\ID(ai) since for
each aj ∈ Desc(ai)\ID(ai) it must exist an agent ak ∈
Desc(ai) ∪ {ai} such that ak is the highest (pseudo) parent
of aj and thus the variable is eliminated at ak (line 7). Finally,
the UTIL message contains Sep(ai) according to [Petcu and
Faltings, 2005b] (Theorem 1). Thus, the size of the UTIL
message is exponential in |Sep(ai)| + |ID(ai)| + 1 and the
theorem is concluded.

4 Tradeoffs
As shown in Section 3.3, AsymDPOP suffers serious scal-
ability problems in both memory and computation. In this
section, we propose two tradeoffs which make AsymDPOP a
practical algorithm.

4.1 Table-Set Propagation Scheme: A Tradeoff
between Memory and Privacy

The utility propagation phase of AsymDPOP could be prob-
lematic due to the unacceptable memory consumption when
the pseudo tree is poor. Consider the pseudo tree shown in
Fig. 3. Since every agent is constrained with the root agent,
according to the GNLE all the variables can only be elim-
inated at the root agent, which incurs a memory consump-
tion of O(dn) due to the join operation in each agent. Here,
d = maxi |Di|. Besides, a large utility table would also incur
unacceptable computation overheads due to the join opera-
tions and the elimination operation (line 5-7).

We notice that utility tables are divisible before performing
eliminations. Thus, instead of propagating a joint and high-
dimension utility table to a parent agent, we propagate a set
of small utility tables. In other words, we wish to reduce the
unnecessary join operations (i.e., line 1 and line 7 in the case
of EV (ai, ac) = ∅) which could cause a dimension increase
during the utility propagation phase. On the other side, com-
pletely discarding join operations would incur privacy leak-
ages. For example, if an chooses to propagate both fn,n−1
and fn1 without performing the join operation to an−1, then
an−1 would know the private functions of an directly. Thus,
we propose to compromise the memory consumption and the
privacy by a parameter kp controlling the the maximal num-
ber of dimensions of each local utility table. We refer the
tradeoff as a table-set propagation scheme (TSPS).

Specifically, when an agent sends a UTIL message to its
parent, it first joins its private functions w.r.t. its parents with
the received utility tables whose dimensions contain the di-
mensions of these private functions. Notice that the first step
does not incur a dimension increase, and can reduce the num-
ber of utility tables. Finally, it propagates the set of utility
tables to its parent.

Consider the pseudo tree shown in Fig. 3 again. Assume
that kp = 3 and then agent an would propagate the utility
set utiln = {fn,n−1 ⊗ fn1} to an−1. Since there is no elim-
ination in an−1, it is unnecessary to perform the join oper-
ation in line 7. Thus, an−1 would propagate the utility set
utiln−1 = {fn−1,n−2 ⊗ fn−1,1, util

n
n−1} to an−2. It can

be concluded that TSPS in the example only requires O(nd3)
space, which is much smaller than the one required by GNLE.
Formally, we have the following theorem.
Theorem 2. The size of each utility table of an agent ai in
TSPS is no greater than

d
max(min(|AP (ai)|,kp), max

ac∈C(ai)
(|ID(ai)∩(ID(ac)∪{ac})|+|Sep(ac)|)

Proof. According to Theorem 1, the dimension of each util-
ity table from child ac ∈ C(ai) is a subset of Sep(ac) ∪
ID(ac) ∪ {ac}. Since TSPS omits the join operation in line
7, the maximal size of received utility tables of ai is

d
max

ac∈C(ai)
(|ID(ai)∩(ID(ac)∪{ac})|+|Sep(ac)|)
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Figure 4: A set of utility tables

Since the local utility is partitioned into utility tables accord-
ing to kp, the maximal size of local utility tables of ai is

dmin(|AP (ai)|,kp)

Thus the theorem holds.

4.2 Mini-batch Elimination Scheme: A Tradeoff
between Time and Space

TSPS could factorize a big utility table to a set of smaller util-
ity tables, which allows us to reduce the computational efforts
when performing eliminations by a decrease-and-conquer
strategy. Taking Fig. 3 as an example, to perform the elimi-
nation, a1 in GNLE has no choice but to optimize a big utility
table over variables x2, . . . xn (line 7), which requires O(dn)
operations. Instead, combining with TSPS (kp = 2) we could
exploit the the structure of each small utility table by arrang-
ing the min operators among them to reduce computational
complexity. That is, instead of performing

min
x2,...xn

u1,2,...,n

we perform

min
x2

(f12+f21+ · · ·+min
xn

(f1n+fn1+fn,n−1+fn−1,n) · · · )

which can be solved recursively from xn to x2 and the overall
complexity is O(nd3). In other words, we reduce the com-
putational complexity by exploiting the independence among
utility tables to avoid unnecessary traverses.

However, completely distributing the min operators into
every variable would incur high memory consumption as a
min operator could implicitly join utility tables to a big and
indivisible table. Although the problem can be alleviated by
carefully arranging the min operators, it is not easy to find the
optimal sequence of eliminations in practice. Consider the
utility tables shown as a factor graph in Fig. 4 where square
nodes represent utility tables and circle nodes represent vari-
ables. And the red circles represent the variables to be elim-
inated. Obviously, no matter how to arrange the elimination
sequence, a 3-ary utility table must appear when eliminating
x1 or x2. Instead, if we jointly optimize both x1 and x2, the
maximal number of dimensions are 2.

We thus overcome the problem by introducing a parame-
ter ke which specifies the minimal number of variables op-
timized in a min operator (i.e., the size of a batch), and re-
fer the tradeoff as a mini-batch elimination scheme (MBES).
Specifically, when performing an elimination operation, we
first divide elimination variables into several groups whose
variables share at least a common utility table. For each vari-
able group, we divide the variables into batches whose sizes
are at least ke if it is possible. For each batch, we perform
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Figure 5: Performance comparison under different agent numbers

optimization to the functions that are related to the batch and
replace these functions with the results. The process termi-
nates when all the variable groups are exhausted.

Note that dividing variables into disjoint variable groups in
the first step is crucial since optimizing independent variables
jointly is equivalent to optimizing them individually. Taking
Fig. 4 for example, if we set ke = 2 and let x2, x5 be a batch,
a 4-ary utility table over x1, x3, x4 and x6 still appear even if
x2 and x5 is jointly optimized.

5 Experimental Results
We empirically evaluate the performances of AsymDPOP and
state-of-the-art complete algorithms for ADCOPs including
PT-ISABB, AsymPT-FB, SyncABB, ATWB and the vanilla
DPOP with PEAV formulation (PEAV DPOP) in terms of the
number of basic operations, network load and privacy leak-
age. For inference-based algorithms, we consider the max-
imal number of dimensions during the utility propagation
phase as an additional metric. Specifically, we use NCLOs
[Netzer et al., 2012] to measure the hardware-independent
runtime in which the logic operations in inference-based al-
gorithms are accesses to the utility tables while the ones in
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search-based algorithms are constraint checks. For the net-
work load, we measure the size of information during an ex-
ecution. Finally, we use entropy [Brito et al., 2009] to quan-
tify the privacy loss [Litov and Meisels, 2017; Grinshpoun
et al., 2013]. For each experiment, we generate 50 random
instances and report the medians as the results.

In our first experiment, we consider the ADCOPs with the
domain size of 3, the density of 0.25 and the agent number
varying from 8 to 24. Fig. 5 presents the experimental results
under different agent numbers. It can be concluded that com-
pared to the search-based solvers, our AsymDPOP algorithms
exhibit great superiorities in terms of network load. That is
due to the fact that search-based algorithms explicitly exhaust
the search space by message-passing, which is quite expen-
sive especially when the agent number is large. In contrast,
our proposed algorithms incur few communication overheads
since they follow an inference protocol and only require a
linear number of messages. On the other hand, although
PEAV DPOP also uses the inference protocol, it still suffers
from a severe scalability problem and can only solve the prob-
lems with the agent number less than 12. The phenomenon is
due to the mirror variables introduced by PEAV formulation,
which significantly increases the complexity. More specifi-
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Figure 7: Performance comparison of different batch sizes

cally, a UTIL message in PEAV DPOP contains the dimen-
sions of mirror variables, which significantly increases the
memory consumption.

Fig. 6 presents the performance comparison under differ-
ent densities. Specifically, we consider the ADCOPs with
the agent number of 8, the domain size of 8 and the den-
sity varying from 0.25 to 1. It can be concluded from Fig.
6(a) that AsymDPOP with TSPS (i.e., kp < w∗ where w∗

is the induced width) incurs significantly less communica-
tion overheads when solving dense problems, which demon-
strates the merit of avoiding unnecessary join operations. Be-
sides, it is interesting to find that compared to the one of
AsymDPOP without TSPS (i.e., kp = w∗), the network load
of AsymDPOP(kp < w∗, ·) increases much slowly. That is
due to the fact that as the density increases, eliminations are
more likely to happen at the top of a pseudo tree. On the
other hand, since unnecessary join operations are avoided in
TSPS, eliminations are the major source of the dimension in-
crease. As a result, agents propagate low dimension utility
tables in most of the time. For NCLOs, search-based algo-
rithms like AsymPT-FB and PT-ISABB outperform AsymD-
POP algorithms when solving dense problems due to their
effective pruning.
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To demonstrate the effects of different batch sizes, we
benchmark MBES with different ke when combining with
TSPS with different kp on the configuration used in the first
experiment. Specifically, we measure the maximal number
of dimensions generated in the utility propagation phase, in-
cluding the intermediate results of MBES. Fig. 7 presents the
experimental results. It can be seen that AsymDPOP with a
small batch size significantly reduces NCLOs but produces
larger intermediate results, which indicates the necessity of
the tradeoff. Besides, the performance of MBES significantly
degenerates when combining with TSPS with a larger kp.
That is because the utility tables contain more dimensions
in the scenario, and a utility table would be traversed more
frequently when performing eliminations.

In the last experiment, we consider the privacy loss of dif-
ferent algorithms when solving asymmetric MaxDCSPs with
different tightness. In particular, we consider the asymmetric
MaxDCSPs with 10 agents, the domain size of 10, the den-
sity of 0.4 and the tightness varying from 0.1 to 0.8. Fig.
8 presents the results. It can be concluded from the figure
that as the tightness grows, the search-based algorithms leak
more privacy while the inference-based algorithms leaks less
privacy. That is due to the fact that search-based algorithms
rely on a direct disclosure mechanism to aggregate the private
costs. Thus, search-based algorithms would leak more pri-
vacy when solving the problems with high tightness as they
need to traverse more proportions of the search space. In con-
trast, inference-based algorithms accumulate utility through
the pseudo tree, and an agent ai could infer the private costs
of its (pseudo) child ac when the utility table involving both
xi and xc is a binary table which is not a result of eliminations
or contains zero entries. Thus, AsymDPOP(kp = 2, ·) leaks
almost a half of privacy. On the other hand, since the num-
ber of prohibit combinations grows as the tightness increases,
AsymDPOP(kp ≥ 3, ·) incurs much lower privacy loss when
solving high tightness problems.

6 Conclusion
In this paper we present AsymDPOP, the first complete in-
ference algorithm for ADCOPs. The algorithm incorporates

three ingredients: generalized non-local elimination which
facilitates the aggregation of utility in an asymmetric environ-
ment, table-set propagation scheme which reduces the mem-
ory consumption and mini-batch elimination scheme which
reduces the operations in the utility propagation phase. We
theoretically show its complexity and our empirical evalua-
tion demonstrates its superiorities over the state-of-the-art, as
well as the vanilla DPOP with PEAV formulation.
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Aguilar, and Jesús Cerquides. Constructing a unifying
theory of dynamic programming DCOP algorithms via
the generalized distributive law. Autonomous Agents and
Multi-Agent Systems, 22(3):439–464, 2011.

[Yeoh et al., 2010] William Yeoh, Ariel Felner, and Sven
Koenig. BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence
Research, 38:85–133, 2010.

[Zhang et al., 2005] Weixiong Zhang, Guandong Wang,
Zhao Xing, and Lars Wittenburg. Distributed stochastic
search and distributed breakout: properties, comparison
and applications to constraint optimization problems in
sensor networks. Artificial Intelligence, 161(1-2):55–87,
2005.

[Zivan and Peled, 2012] Roie Zivan and Hilla Peled.
Max/min-sum distributed constraint optimization through
value propagation on an alternating DAG. In Proceedings
of the 11th International Conference on Autonomous
Agents and Multiagent Systems, pages 265–272, 2012.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

230


