
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2020) 34:50
https://doi.org/10.1007/s10458-020-09476-5

1 3

A hybrid tree‑based algorithm to solve asymmetric
distributed constraint optimization problems

Dingding Chen1 · Yanchen Deng2 · Ziyu Chen1 · Zhongshi He1 · Wenxin Zhang1

Published online: 21 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Asymmetric distributed constraint optimization problems (ADCOPs) have emerged as an
important formalism in multi-agent community due to their ability to capture personal
preferences. However, the existing search-based complete algorithms for ADCOPs only
exploit local knowledge to calculate lower bounds, which leads to inefficient pruning and
prohibits them from solving large scale problems. On the other hand, inference-based com-
plete algorithms (e.g., DPOP) for distributed constraint optimization problems are able to
aggregate the global cost promptly but cannot be directly applied into ADCOPs due to
a privacy concern. Thus, in this paper, we investigate the possibility of combining infer-
ence and search to effectively solve ADCOPs at an acceptable loss of privacy. Specifically,
we propose a hybrid complete ADCOP algorithm called PT-ISABB which uses a tailored
inference algorithm to provide tight lower bounds and upper bounds, and a tree-based com-
plete search algorithm to guarantee the optimality. Furthermore, we introduce two subop-
timal variants of PT-ISABB based on bounded-error approximation mechanisms to enable
trade-off between theoretically guaranteed solutions and coordination overheads. We prove
the correctness of PT-ISABB and its suboptimal variants. Finally, the experimental results
demonstrate that PT-ISABB exhibits great superiorities over other state-of-the-art search-
based complete algorithms and its suboptimal variants can quickly find a solution within
the user-specified bounded-error.

Keywords DCOP · ADCOP · Complete ADCOP algorithm · Search · Inference

Dingding Chen and Yanchen Deng have contributed equally to this work.

 * Ziyu Chen
 chenziyu@cqu.edu.cn

 * Zhongshi He
 zshe@cqu.edu.cn

1 College of Computer Science, Chongqing University, Chongqing 400044, China
2 School of Computer Science and Engineering, Nanyang Technological University,

Singapore 639798, Singapore

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09476-5&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 2 of 42

1 Introduction

Distributed constraint optimization problems (DCOPs) [10, 19, 41] are an elegant para-
digm for modeling multi-agent system (MAS) where agents coordinate with each other to
optimize a global objective. They have been successfully applied into various MAS appli-
cations including smart home [11], radio frequency allocation [27], task scheduling [18,
38] and many others.

Over the past decades, a wide variety of algorithms have been developed to solve
DCOPs and can be divided into either complete or incomplete ones. Incomplete algo-
rithms aim to produce near-optimal solutions at small computational efforts and generally
follow three strategies, i.e., local search [24, 42], inference [5, 9, 37, 44] and sampling
[29, 31]. On the contrary, complete algorithms guarantee to find the optimal solution and
can be broadly classified into inference-based and search-based algorithms. Search-based
complete algorithms [4, 13, 19, 23, 26, 28, 40] use distributed backtrack search to exhaust
the search space, generally employing either a best-first or a depth-first branch-and-bound
search strategy. These algorithms have a linear message size but an exponential number
of messages. Different from search-based complete algorithms, inference-based complete
algorithms [33, 39] use a dynamic programming to solve DCOPs. They require a linear
number of messages, but the message size is exponential in the induced width [7, 35].

However, DCOPs fail to capture ubiquitous asymmetric structures in real world scenar-
ios [3, 25, 36] since each constrained agent shares the same cost. Asymmetric distributed
constraint optimization problems (ADCOPs) [15] are a notable extension to DCOPs, which
captures asymmetry by explicitly defining the exact cost for each participant of a constraint
and has been intensively investigated in recent years.

Solving ADCOPs is more challenging since algorithms must evaluate and aggregate the
cost for each participant of a constraint. Complete algorithms for ADCOPs [15, 23] are
nearly the variants of synchronous search-based complete DCOP solvers in consideration
of the aggregation for the costs of each side. More specifically, they perform a depth-first
branch-and-bound in virtue of either a two-phase strategy or a one-phase strategy [2] to
accumulate the each side constraint cost at the expense of privacy. As known, the per-
formance of the branch-and-bound search-based algorithms is heavily dependent on the
tightness of bounds established according to the knowledge of each agent. Unfortunately,
the existing search-based complete algorithms for ADCOPs only use local knowledge to
construct the lower bounds, which leads to inefficient pruning and limits the scale of prob-
lems they can solve. On the other side, inference-based complete algorithms for DCOPs
only require a linear number of messages to aggregate the global cost, but they cannot be
directly applied to solve ADCOPs. That is partially because these algorithms require the
total knowledge of each constraint in order to perform variable elimination optimally. In
other words, parent and pseudo parents must transfer their private constraints to their chil-
dren to perform variable eliminations, which is unacceptable in an asymmetric scenario.

In this paper, we consider the possibility of combining both inference and search to effi-
ciently solve ADCOPs at an acceptable loss of privacy. Specifically, our main contributions
are listed as follows.

• We propose a hybrid tree-based complete algorithm for ADCOPs, called PT-ISABB.
The algorithm first establishes tight lower bounds and upper bounds by using a tailored
version of ADPOP [32] (i.e., an approximated version of DPOP which is an inference-
based complete algorithm for DCOPs) which can be performed at an acceptable loss of

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 3 of 42 50

privacy. Then, a variant of SyncABB-1ph [15] is implemented on a pseudo tree to find
the optimal solution, where an estimation reporting mechanism is introduced to com-
pute complete upper bounds and avoid directly disclosing the private constraint costs.

• We propose two suboptimal variants of PT-ISABB by using absolute error mecha-
nism [26] and relative error mechanism [40] to allow users to specify an absolute error
bound and a relative error bound, respectively. For adapting Absolute Error Mechanism
on PT-ISABB, an absolute error bound allocation mechanism is proposed to allocate
the user-specified absolute error bound for each subproblem.

• We theoretically show the correctness of our proposed algorithms including PT-ISABB
and its two suboptimal variants. Moreover, we prove that the lower bounds in PT-
ISABB are at least as tight as the ones in AsymPT-FB when its maximal dimension
has no limit. Finally, our empirical evaluation results confirm the superiorities of our
proposed algorithms.

The rest of the paper is organized as follows. In Sect. 2, we briefly review related work.
Section 3 gives the preliminaries including DCOPs, ADCOPs, pseudo tree, DPOP and
ADPOP. In Sect. 4, we describe the proposed hybrid complete algorithm for ADCOPs
named PT-ISABB. The theoretical analysis of PT-ISABB can be found in Sect. 5. In
Sect. 6, we introduce two suboptimal variants of PT-ISABB. Lastly, we present the empiri-
cal evaluation to our proposed methods in Sect. 7 and conclude the paper in Sect. 8.

2 Related work

Incomplete algorithms for DCOPs can be roughly categorized into local search, inference-
based, and sampling-based algorithms. In local search algorithms such as DBA[20], DSA
[42], MGM [24] and GDBA [30], agents exchange their own states with neighbors and
optimize individual benefits in terms of the latest states of their neighbors. Inference-based
incomplete algorithms like Max-sum [9] and its variants [5, 37, 44] employ belief propaga-
tion on the factor-graph [21] to gather the global information. Sampling-based algorithms
including DUCT [31] and D-Gibbs [29] are the recent emerging incomplete algorithms
which perform sampling on a pseudo tree according to the confidence bounds or the statis-
tical inference, respectively.

Complete algorithms for DCOPs employ either systematic search or inference. SyncBB
[19] is an early search-based algorithm, which performs a depth-first branch-and-bound
search on a chain-based structure. AFB [13] was proposed to improve SyncBB for achiev-
ing better concurrent computation, where all agents execute the forward bounding concur-
rently and asynchronously to establish tight lower bound. ConcFB [28] came out to further
enhance parallelism by performing multiple parallel versions of AFB concurrently. How-
ever, a chain-based structure could force unconstrained agents to communicate with each
other and disallow parallel exploration of the search space. Alternatively, a pseudo tree
[12] was proposed to create communication links among agents that share constraints and
parallelize the computation in different branches. ADOPT [26] is a classical asynchronous
algorithm operating on a pseudo tree, which uses a best-first search strategy. However, its
search strategy incurs unnecessary reconstruction of abandoned solutions. Subsequently,
BnB-ADOPT [40] was proposed to solve the issue by adopting a depth-first branch-and-
bound search strategy. Different from BnB-ADOPT, NCBB [4] and PT-FB [23] are the
synchronous algorithms that employ a depth-first branch-and-bound search on a pseudo

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 4 of 42

tree. For improving the lower bound tightness, NCBB adopts the eager propagation of
lower bounds on the solution cost while PT-FB uses forward bounding on the independent
branches of a pseudo tree in parallel.

DPOP is a representative inference-based complete algorithm for DCOPs, which per-
forms dynamic programming on a pseudo tree. Specifically, agents in DPOP forward the
assignment combination utilities to their parents and broadcast their optimal decisions to
their children along the pseudo tree. However, its maximal message size is exponential in
the induced width [35] of the pseudo tree. Accordingly, ODPOP [34] and MB-DPOP [35]
were proposed to trade the number of messages for the maximal message size. Besides,
Action_GDL [39] was proposed to generalize DPOP by performing dynamic programming
on a distributed junction tree to enhance its efficiency.

Most of the algorithms for ADCOPs adapt the above DCOP algorithms to handle asym-
metric constraint costs. Local search algorithms for ADCOPs like ACLS, MCS-MGM
and GCA-MGM [15] are the asymmetric extensions of DSA and MGM, where each agent
exchanges its state and its side constraint cost to its neighbour involved in the same con-
straint. Additionally, Zivan et al. [45] proposed to apply Max-sum and its variants to solve
ADCOPs on asymmetric factor-graphs.

Search-based complete algorithms for ADCOPs adopt either a two-phase strategy or a
one-phase strategy to aggregate constraint costs of each side. More specifically, the algo-
rithms with a two-phase strategy consider only one-side constraint costs in the first phase
and gather the other side constraint costs in the second phase once a complete assignment
is reached, while the algorithms with a one-phase strategy systematically check each side
of the constraints before reaching a full assignment. SyncABB-2ph [15] is the asymmetric
adaption of SyncBB with a two-phase strategy. Instead, SyncABB-1ph and ATWB [15]
are the asymmetric versions of SyncBB and AFB based on a one-phase strategy, respec-
tively. To achieve a one-phase check, SyncABB-1ph uses a sequence of back checking
processes while ATWB performs backward bounding. As the asymmetric adaptation of
PT-FB, AsymPT-FB [23] is the first tree-based algorithm for ADCOPs with a one-phase
strategy. Just like ATWB, AsymPT-FB executes forward bounding to facilitate the lower
bound accumulation by forwarding copies of current partial assignment (Cpa) to their con-
strained descendants, and back bounding to inquire the constraint costs on the other side by
sending copies of Cpa backwards to their constrained ancestors in the pseudo tree.

3 Background

In this section, we introduce the preliminaries including DCOPs, ADCOPs, pseudo tree,
DPOP and ADPOP.

3.1 Distributed constraint optimization problems

A distributed constraint optimization problem [26] can be defined by a tuple ⟨A,X,D,F⟩
such that:

• A = {a1,… , aq} is a set of agents.
• X = {x1,… , xn} is a set of variables. Each variable xi is only controlled by an agent.
• D = {D1,… ,Dn} is a set of finite variable domains. Each domain Di ∈ D consists of a

set of finite allowable values for variable xi ∈ X.

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 5 of 42 50

• F = {f1,… , fm} is a set of constraint functions. Each function
fi∶Di1

×⋯ × Dik
→ ℝ≥0 ∪ {∞} specifies a non-negative costs to each value combina-

tion of the involved variables xi1 ,… , xik . Here, the constraints of an infinite cost are so
called hard constraints which represent the combinations of assignments that are strictly
forbidden, and the constraints of a finite cost are called soft constraints.

To facilitate understanding, we assume that each agent only controls a single variable (i.e.,
q = n) and all constraints are binary (i.e., fij∶Di × Dj → ℝ≥0 ∪ {∞}). Thus, the term agent
and variable can be used interchangeably. These assumptions are commonly used in the
DCOP literature [23, 26, 33, 40]. A solution to a DCOP is an assignment to all variables
such that the total cost is minimized. That is,

3.2 Asymmetric distributed constraint optimization problems

While DCOPs assume an equal cost for each participant of each constraint, asym-
metric distributed constraint optimization problems (ADCOPs) [15] explicitly
define the exact cost for each constrained agent. In other words, a constraint function
fi∶Di1

×⋯ × Dik
→

∏k

j=1
(ℝ≥0 ∪ {∞}) in an ADCOP specifies a cost vector for each pos-

sible combination of involved variables. Following the assumption in DCOPs, we also
assume that each agent only controls a single variable and all the constraints are binary in
ADCOPs. For a binary constraint between xi and xj , we denote the private cost functions
for xi and xj as fij and fji , respectively. Note that in the asymmetric setting, fij does not nec-
essarily equal fji . And the goal of solving an ADCOP is to find a solution which minimizes
the aggregated constraint costs of each side. That is,

An ADCOP can be visualized by a constraint graph where a node represents an agent
and an edge represents a binary constraint. Figure 1a gives the constraint graph of an
ADCOP with four agents and four binary constraints whose private cost functions can be
found in Fig. 1c. In the example, each agent has a single variable with domain {0, 1} , and
the optimal solution is {(x1, 0), (x2, 0), (x3, 0), (x4, 0)} with the cost of 25.

3.3 Pseudo tree

Definition 1 (Pseudo tree [12]) A pseudo tree arrangement of a constraint graph is a tree
with the same nodes and edges as the original graph, and with the property that adjacent
nodes from the original graph fall in the same branch of the tree.

Therefore, the search process can be performed on the independent branches in a pseudo
tree in parallel. A pseudo tree can be generated by a depth-first traversal of a constraint
graph, which categorizes the constraints into tree edges and pseudo edges (i.e., non-tree
edges). Figure 1b presents a possible pseudo tree deriving from Fig. 1a where tree edges
and pseudo edges are shown as solid lines and dashed lines, respectively.

X∗ = argmin
di∈Di,dj∈Dj

∑
fij∈F

fij(xi = di, xj = dj).

X∗ = argmin
di∈Di,dj∈Dj

∑
fij,fji∈F

fij(xi = di, xj = dj) + fji(xj = dj, xi = di).

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 6 of 42

For an agent ai , its neighbors can be categorized into its parent P(ai) , pseudo parent
PP(ai) , children C(ai) and pseudo children PC(ai) according to their positions in the
pseudo tree and the type of edges they connect through. More precisely, they can be
formally defined as follows:

• P(ai) is the ancestor connecting with ai through a tree edge (e.g., P(a2) = a1 in
Fig. 1b).

• PP(ai) is the set of ancestors that connect with ai through pseudo edges (e.g.,
PP(a3) = {a1} in Fig. 1b).

• C(ai) is the set of descendants connecting with ai through tree edges (e.g.,
C(a2) = {a3, a4} in Fig. 1b).

• PC(ai) is the set of the descendants that connect with ai through pseudo edges (e.g.,
PC(a1) = {a3} in Fig. 1b).

For succinctness, we also adopt the following notations.

• AP(ai) is the set of ai ’s ancestors connecting with ai , i.e., AP(ai) = PP(ai) ∪ {P(ai)}
(e.g., AP(a3) = {a1, a2} in Fig. 1b).

• AC(ai) is the set of ai ’s descendants connecting with ai , i.e., AC(ai) = PC(ai) ∪ C(ai)
(e.g., AC(a1) = {a2, a3} in Fig. 1b).

• Desc(ai) is the set of descendants of ai (e.g., Desc(a1) = {a2, a3, a4} in Fig. 1b).
• Sep(ai)[34] is the separator set of ai , comprising the ancestors that are constrained with

agents in {ai} ∪ Desc(ai) (e.g., Sep(a3) = {a1, a2} in Fig. 1b).

Additionally, we define w∗ , the induce width of a pseudo tree, as the size of the largest
separator set of any node in the pseudo tree, i.e., w∗ = maxai∈A |Sep(ai)|.

(a) Constraint graph (b) An example of pseudo tree

x1

x3 0 1

0 2 7
1 6 9

x1

x2 0 1

0 1 1
1 4 7

x3

x1 0 1

0 4 5
1 8 3

x2

x1 0 1

0 4 5
1 2 8

x2

x3 0 1

0 5 1
1 3 5

x2

x4 0 1

0 3 7
1 5 9

x3

x2 0 1

0 4 5
1 3 2

x4

x2 0 1

0 2 3
1 1 2

(c) Constraint functions

Fig. 1 An ADCOP instance

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 7 of 42 50

3.4 DPOP and ADPOP

Before diving into the details of DPOP and ADPOP, let’s first consider the following
definitions.

Definition 2 (dims) Let U be a function, dims(U) is the dimensions of U.

Definition 3 (Slice) Let P be a set of key-value pairs. P[K] is a slice of P over K such that:

Definition 4 (Join [32]) Let U,U′ be two cost tables and
DU = �xi∈dims(U)Di,DU� = �xi∈dims(U

�)Di be their domain spaces. U ⊗ U′ is the join of U
and U′ over DU⊗U� = 𝛱xi∈dims(U)∪dims(U�)Di such that:

Definition 5 (Projections [32]) Let U be a cost table and S be a subset of the dimensions to
U (i.e., S ⊂ dims(U)). U⊥+

S
 and U⊥−

S
 are the maximal and minimal projections of U along

the S axis respectively, which can be defined by:

where P = {(dims(U),V)|∀V ∈ �xi∈dims(U)Di} . For simplicity, we denote U⊥S as the abbre-
viation for U⊥+

S
 and U⊥−

S
 . That is,

Similarly, we also denote U± = U�± ⊗ U��± as the abbreviation for U+ = U�+ ⊗ U��+ and
U− = U�− ⊗ U��−.

DPOP1 [33] is an important inference-based complete algorithm for DCOPs, which per-
forms a distributed bucket elimination scheme [8] on a pseudo tree. DPOP comprises the
following phases.

• Pseudo tree construction phase executes a distributed depth-first traversal on the con-
straint graph of a DCOP to produce a pseudo tree. After this phase, each agent ai knows
its parent P(ai) , pseudo parents PP(ai) , children C(ai) and pseudo children PC(ai).

• COST propagation phase performs variable eliminations and cost propagation from
leaf agents to the root agent along the pseudo tree. In this phase, each agent ai joins the
received cost tables from its children with its local cost table, eliminates its variable
from the joint cost table by calculating the optimal value for each assignment combina-
tion of its separator. That is,

(1)P[K] = {(k, v)|(k, v) ∈ P,∀k ∈ K}.

(2)
(U ⊗ U�)(p) = U(p[dims(U)]) + U�(p[dims(U�)]),∀p ∈

{
(dims(U ⊗ U�),V)|∀V ∈ DU⊗U�

}
.

(3)(U⊥+
S
)(p) = max

ps∈P[S]

U(p ∪ ps),∀p ∈ P[dims(U)�S]

(4)(U⊥+
S
)(p) = min

ps∈P[S]

U(p ∪ ps),∀p ∈ P[dims(U)�S]

(5)U⊥S = {U⊥−
S
,U⊥+

S
}

1 We describe DPOP as a minimization version to cope with the objective of DCOPs.

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 8 of 42

where utilc
i
 is the cost table received from its child ac ∈ C(ai) (i.e., utilc

i
= utilc) and

local_utili is ai ’s local cost table combining the constraints between ai and AP(ai) . That
is,

and then propagates utili to its parent P(ai) via a COST message.
• VALUE propagation phase implements to assign the optimal value for each variable

vice versa along the pseudo tree. In the phase, each agent ai selects its optimal assign-
ment d∗

i
 based on the cost tables received during the COST propagation phase and the

optimal assignment PA∗
i
 received from its parent. That is,

extends PA∗
i
 with its optimal assignment (i.e., PA∗

i
∪ {(xi, d

∗
i
)}) and broadcasts the

extended assignment to its children via VALUE messages. It is noteworthy that the
assignment sent to its child ac ∈ C(ai) is PA∗

i[Sep(ac)]
∪ {(xi, d

∗
i
)} where

Sep(ac) = dims(utilc
i
).

Although DPOP only requires a linear number of messages to solve a DCOP, its maxi-
mal message size is exponential in the induced width of the pseudo tree, which prohib-
its it from solving more complex problems. Thus, ADPOP[32] was proposed to allow the
desired trade-off between solution quality and the maximal message size. Specifically,
ADPOP imposes a limit k on the maximum number of dimensions in each COST mes-
sage.2 When the dimension size of its outgoing COST message exceeds the limit, ai drops a
set of dimensions S to stay below the limit. That is, it computes the upper bound and lower
bound of the original cost table (i.e., the maximal cost table and minimal cost table) by
eliminating {xi} ∪ S according to Eq. (9).

where utilc±
i

 is the maximal and minimal cost tables received from its child ac , and

S ⊂ dims
��⨂

ac∈C(ai)
utilc−

i

�
⊗ local_utili

�
 is the dimension set selected to make the

dimension size of the outgoing cost table below the limit k (i.e.,
|dims(util−

i
)| = |dims(util+

i
)| ≤ k). During the VALUE propagation phase, each agent ai

makes a decision according to the partial assignment PA∗
i
 received from its parent, its local

cost table and the received maximal cost table or minimal cost table u ∈ {utilc−
i
, utilc+

i
} .

That is,

(6)utili =

((⨂
ac∈C(ai)

utilc
i

)
⊗ local_utili

)
⊥−
xi

(7)local_utili =
⨂

aj∈AP(ai)

fij

(8)d∗
i
= argmin

di∈Di

∑
ac∈C(ai)

utilc
i
(PA∗

i
, di) + local_utili(PA

∗
i
, di)

(9)util±
i
=

((⨂
ac∈C(ai)

utilc±
i

)
⊗ local_utili

)
⊥S⊥

−
{xi}

2 For a coherent presentation, we denote the maximum dimension limit as k instead of maxDims in ADPOP
[32].

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 9 of 42 50

4 PT‑ISABB

In this section, we present our proposed PT-ISABB, a two-phase hybrid complete algo-
rithm for ADCOPs. We describe the motivation of PT-ISABB in Sect. 4.1, and then elabo-
rate on its inference phase and search phase in Sects. 4.2 and 4.3, respectively. Next, a
discussion about the privacy in PT-ISABB is provided in Sect. 4.5. Finally, a trace of PT-
ISABB for our example DCOP is shown in Sect. 4.5.

4.1 Motivation

A common drawback of the existing search-based complete ADCOP algorithms is that
they only use local knowledge to compute lower bounds, which could lead to inefficient
pruning. Taking AsymPT-FB for example, unassigned agents report the best local costs
under the given partial assignment to compute lower bounds by forward bounding. Take
Fig. 1b as an example. a2 requires its parent a1 to directly expose a1 ’s private constraint cost
(i.e., f12 under the assignment of x1 and x2), and its children a3 and a4 to report the lower
bounds of f21 and f31 via LB_Report messages. Accordingly, a2 has no knowledge about
the remaining constraints (i.e., the constraints between a1 and a3).

On the other hand, inference-based complete algorithms (e.g., DPOP) which use local
eliminations are able to propagate and aggregate the global cost, but they are not applicable
to solve ADCOPs due to a privacy concern. For example, a3 needs to know both f13 and f23
to optimally eliminate its variable x3 , which violates the privacy of a1 and a2.

Thus, to overcome the downsides, we propose a novel hybrid scheme to solve ADCOPs,
which combines the advantages of both inference and search. Specifically, the scheme con-
sists of the following phases.

• Inference phase performs bottom-up cost propagation with respect to a subset of con-
straints to build both minimal and maximal look-up tables to establish lower bounds
and upper bounds for the search process.

• Search phase uses a tree-based complete search algorithm for ADCOPs to exhaust the
search space, where an estimation reporting mechanism is introduced to avoid the direct
exposure of private constraint costs and compute complete upper bounds.

More specifically, we propose a tailored version of ADPOP for the inference phase
to avoid the exponential memory consumption and severe privacy loss in DPOP. For the
search phase, we implement SyncABB-1ph on a pseudo tree and propose an algorithm
called PT-ISABB. Although they both operate on a pseudo tree, our algorithm excels
AsymPT-FB twofold. The lower bounds in PT-ISABB are at least as tight as the ones in
AsymPT-FB when there is no memory limit (see Property 1 for detail). Moreover, our
algorithm avoids performing forward bounding which could be expensive during the
search phase.

(10)di = argmin
di∈Di

∑
ac∈C(ai)

u(PA∗
i
, di) + local_utili(PA

∗
i
, di).

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 10 of 42

4.2 Inference phase: a tailored version of ADPOP for ADCOPs

As mentioned earlier, solving ADCOPs with exact local eliminations leads to an unaccep-
table loss of privacy. Therefore, we do not require parent and pseudo parents to disclose
their private functions to perform inference exactly. However, ignoring the private con-
straints of parent and pseudo parents would lead to inconsistencies when performing local
eliminations. In other words, we actually trade the bound tightness for privacy. We try to
alleviate the problem by performing non-local elimination which is elaborated as follows.

When receiving the maximal and minimal cost tables util±
c
 from its child ac ∈ C(ai) , an

agent ai joins the received cost tables with its constraint function fic and eliminates xc to
improve the completeness of utilc±

i
 . To further enhance the completeness of utilc±

i
 to com-

pute tighten bounds for the search phase, we also consider the remaining constraints in ac ’s
branch. That is,

Here, Desc(ac) can be propagated from ac to ai along with the cost table propagation which
allows an agent ai to know Desc(ac) in computing the most right part of Eq. (11).

Compared to DPOP and ADPOP, the elimination of each variable is postponed to its
parent rather than performed by itself. Taking Fig. 1b as an example, the COST message
sent from a3 to a2 is given by:

if the limit k ≥ 3 . The elimination of x3 is actually performed by a2 . That is,

After all the COST messages from its children have arrived, ai disposes the received
cost tables according to Eq. (11), joins them with its local cost table and drops S (e.g., the
dimensions of its highest ancestors3 to stay below the limit k) when the dimension size of
the outgoing cost tables exceeds the memory budget, and sends a COST message to its par-
ent along with util±

i
.

Here, the local cost table local_utili denotes the combination of the constraints between
agent ai and AP(ai) enforced in ai ’s side. That is,

(11)utilc±
i

= (util±
c
⊗ fic)⊥xc

⊗

⎛⎜⎜⎝
�

aj∈PC(ai)∩Desc(ac)

fij⊥xj

⎞⎟⎟⎠

f31 ⊗ f32

util3±
2

= (f23 ⊗ f32 ⊗ f31)⊥x3
.

(12)util±
i
=

((⨂
ac∈C(ai)

utilc±
i

)
⊗ local_utili

)
⊥S

(13)local_utili =
⨂

aj∈AP(ai)

fij

3 In our implementation, this is achieved by agents propagating their levels in the pseudo tree to their chil-
dren and pseudo children, which allows an agent a

i
 knows which agent is its highest ancestor.

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 11 of 42 50

It can be seen from Eqs. (12) and (13) that ai only considers its private functions when per-
forming variable elimination and thus the privacy of AP(ai) are guaranteed.

Figure 2 presents the pseudo code of the inference phase for PT-ISABB. The phase
begins with leaf agents sending their local cost tables to their parents via COST messages
(lines 1–3, 11–14). Particularly, if the dimension size of the outgoing cost tables exceeds
the limit k (line 11), ai drops the exceeded dimensions with a maximal and minimal pro-
jection (lines 12–13). When receiving a COST message from its child ac , ai deals with the
received cost tables according to Eq. (11) (line 4). After all the COST messages from its
children have arrived, ai propagates the joint maximal and minimal cost tables to its parent
if it is not the root agent (lines 9–10, 11–14). Otherwise, it starts the search phase (lines
7–8).

4.3 Search phase: a variant of SyncABB‑1ph on a pseudo tree

The search phase performs a depth-first branch-and-bound search and a one-phase strat-
egy on a pseudo tree to exhaust the search space. More specifically, each branching agent
decomposes the problem into several subproblems and thus its children can solve their sub-
problems in parallel. To discover the optimal solution and discard the suboptimal solution
promptly, each agent ai needs to maintain the lower bound LBi and upper bound UBi for
its subproblem. To calculate UBi , ai needs to access the complete information about its
subproblem including the private constraints on the sides of Sep(ai) . Thus, we introduce
an estimation reporting mechanism where agents in Sep(ai) report the optimistic and pes-
simistic accumulated estimations of their private constraints involved in ai ’s subproblem.
Here, the optimistic and pessimistic estimation of a binary function fji(xj, xi) with a given
(xj, dj) are the lower bound and upper bound of the unitary function fji(dj, xi) , respectively
(i.e., mindi∈Di

fji(dj, di) and maxdi∈Di
fji(dj, di)). Further, for fji with a given {(xj, dj), (xi, di)} ,

Fig. 2 Pseudo code of inference phase

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 12 of 42

we introduce the residual constraint cost as the difference between its actual cost and its
optimistic estimation. Consequently, to accumulate the two-side constraint costs, parent
and pseudo parents only need to forward their residual constraint costs instead of directly
disclosing their private constraint costs in AsymPT-FB.

Specifically, each agent ai needs to maintain the following data structures.

• Cpai refers to the current partial assignment (Cpa), which contains all the assignments
to Sep(ai).

• Srch_valc
i records the assignment currently being explored by the agents in the sub-tree

rooted at its child ac ∈ C(ai) . The data structure is necessary since asynchronous search
is carried out concurrently in sub-trees based on different possible values of xi.

• EstRepi contains all the optimistic and pessimistic accumulated estimations of
ai and its descendants. EstRepi(xj) ∈ EstRepi is the accumulated estimations of
aj ∈ {ai} ∪ Desc(ai) , which can be formalized as:

It is worth noting that calculating EstRepi(xj) is actually an incremental pro-
cess in the proposed estimation reporting mechanism and does not require parent
and pseudo parents to transfer their private cost functions as Eq. (14) does. Here,
EstRepi(xj) = {EstRepi(xj)

−,EstRepi(xj)
+} where EstRepi(xj)− and EstRepi(xj)+ are the

optimistic and pessimistic accumulated estimation of xj , respectively.
• high_costi(di) is the sum of the two-side costs of constraints between ai and AP(ai)

under Cpai and its assignment (xi, di) for di ∈ Di . It is initialized to the sum of the con-
straint costs enforced in ai ’s side and the optimistic accumulated estimation of ai . That
is,

Here, EstRepi(xi)− is included to avoid the direct exposure of parents’ privacy con-
straint costs for obtaining the complete hight costs. Specifically, for obtaining the
complete high_costi(di) , ai only needs to request all its parents for the corresponding
residual constraint costs for di rather than the actual constraint costs. After receiving
these residual constraint costs, high_costi(di) reflects the double-side cost between ai
and AP(ai) for di . That is,

• lbc
i
(di) is the lower bound of ac ∈ C(ai) for di ∈ Di , which is initially set to utilc−

i

under Cpai ∪ {(xi, di)} plus the optimistic accumulated estimations of agents in
Desc(ac) ∪ {ac} . That is,

• ubc
i
(di) is the upper bound of ac ∈ C(ai) for di ∈ Di , which is initially set to utilc+

i

under Cpai ∪ {(xi, di)} plus the pessimistic accumulated estimations of agents in
Desc(ac) ∪ {ac} . That is,

(14)EstRepi(xj) = ⊗
al∈Sep(ai)∩AP(aj)

flj(Cpai(xl), xj)⊥xj

(15)high_costi(di) =
∑

aj∈AP(ai)

fij(di,Cpai(xj)) + EstRepi(xi)
−

∑
aj∈AP(ai)

fij(di,Cpai(xj)) + fji(Cpai(xj), di)

(16)lbc
i
(di) = utilc−

i
(Cpai[Sep(ac)], di) +

∑
aj∈Desc(ac)∪{ac}

EstRepi(xj)
−

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 13 of 42 50

Since obtaining a complete ubc
i
(di) needs to consider the double-side costs of all

constraints related to {ac} ∪ Desc(ac) according to Lemmas 2 and 3, we include
EstRepi(xj)

+,∀aj ∈ Desc(ac) ∪ {ac} in the calculation of Eq. (17) and separates the join
computations of all constraints fij with PC(ai) by each ac in Eq. (11) rather than join all
constraints fij with PC(ai) in Eq. (12).

• lbi(di) is the lower bound for di ∈ Di . That is,

• ubi(di) is the upper bound for di ∈ Di and initially set to

After ai receives all the residual constraint costs from AP(ai) for di , ubi(di) needs to be
replaced with high_costi(di) +

∑
ac∈C(ai)

ubc
i
(di).

• LBi is the lower bound of its subproblem under Cpai . That is,

• UBi is the upper bound of its subproblem under Cpai . That is,

To implement a depth-first branch-and-bound search and a one-phase strategy on a
pseudo tree, four types of messages are used in the search phase.

• CPA is a message sent from agent ai to ac ∈ C(ai) and contains the partial assignment
Cpac , threshold THc and accumulated estimations EstRepc .

 where Cpac is the partial assignment extended with the assignment (xi, di) (i.e.,
Cpac = Cpai[Sep(ac)] ∪ {(xi, di)}), and THi is the threshold of ai ’s subproblem under Cpai .
Particularly, THi = ∞ if ai is the root agent. THc is the threshold of ac ’s subproblem
under Cpac , and can be computed by:

• BACKTRACK is a message sent from ai to P(ai) and consists of the cost opti and cor-
responding partial assignment Spai(d∗i) .

where opti is the optimal cost of ai ’s subproblem under Cpai if Cpai is feasible (i.e.,
opti ≤ THi) or ∞ otherwise, and Spai(d∗i) refers to the optimal assignment of its

(17)ubc
i
(di) = utilc+

i
(Cpai[Sep(ac)], di) +

∑
aj∈Desc(ac)∪{ac}

EstRepi(xj)
+

(18)lbi(di) = high_costi(di) +
∑

ac∈C(ai)

lbc
i
(di)

(19)ubi(di) = high_costi(di) − EstRepi(xi)
− + EstRepi(xi)

+ +
∑

ac∈C(ai)

ubc
i
(di)

(20)LBi = min
di∈Di

lbi(di)

(21)UBi = min
di∈Di

ubi(di)

ai → ac∶CPA(Cpac, THc,EstRepc), ac ∈ C(ai)

(22)THc = min(UBi, THi) − high_costi(di) −
∑

aj∈C(ai)∧j≠c

lb
j

i
(di)

ai → P(ai)∶BACKTRACK(opti, Spai(d
∗
i
))

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 14 of 42

subproblem under Cpai ∪ {(xi, d
∗
i
)} . Here, d∗

i
= argmindi∈Di

ubi(di) . It is worth noting
that Spai(di) is initially set to {(xi, di)} , and Spai(d∗i) is the optimal solution if ai is the
root agent.

• RESD_REQ is a message sent from ai to aj ∈ AP(ai) to request the residual constraint
cost of fji under the assignment {(xi, di), (xj, dj)} .

• RESD is a message sent from ai to aj ∈ C(ai) ∪ PC(ai) to response the received RESD_
REQ message with {(xi, di), (xj, dj)} from aj .

 Here, the residual constraint cost rij is calculated by:

Figures 3 and 4 present the pseudo codes of the search phase for PT-ISABB. The phase
begins with the root agent sending its first feasible assignment [i.e., the first assignment di
such that lbi(di) < min(UBi, THi) (lines 67–70)] to its children via CPA messages (lines
15–18, 71–74). When receiving a CPA message from its parent, ai stores the received Cpai ,
threshold and estimation reports, and then initializes its related variables according to Eqs.
(15–21) (lines 19–20, 63–66). Afterwards, ai backtracks to its parent with an infinity cost
and an empty subproblem assignment if Cpai is infeasible (lines 21–22). Otherwise, it finds
its first feasible assignment di and requests the residual constraint costs for that assignment
via RESD_REQ messages (lines 23–26). Upon receipt of a RESD_REQ message from its
(pseudo) child, ai replies with the corresponding residual constraint cost via a RESD mes-
sage (line 27).

When receiving a RESD message for di , ai adds the reported residual constraint cost
to its high cost for di (line 28). Upon receipt of all RESD messages for di from its parent
and pseudo parents, ai updates its bounds (lines 29–30), and backtracks to its parent with
the found solution (i.e., the best cost and subproblem assignment when Cpai is feasible
or ∞ and an empty assignment otherwise) via a BACKTRACK message if the backtrack
condition is satisfied (lines 31–32, 75–79). Otherwise, ai continues to explore the search
space. For a leaf agent ai , it just switches to its next feasible assignment d′

i
 and requests the

residual constraint costs for d′
i
 (lines 34–36). If ai is a non-leaf agent and di is still worth

being explored, it extends Cpai and sends the extended Cpai to its children who are going
to explore di (lines 43–44). Otherwise, di is proven to be suboptimal and thus ai switches to
its next feasible assignment d′

i
4 and requests residual constraint costs for d′

i
 (lines 38–42).

When receiving a BACKTRACK message for di from ac , ai updates its corresponding
bounds with the reported cost optc and merges the received partial assignment Spac if
Cpai ∪ {(xi, di)} is feasible (otherwise, optc = ∞ and Spac = �) (line 45). Then, ai deter-
mines whether it needs to backtrack (line 46). If it needs, a backtrack takes place if it
is not the root agent (lines 50–51). Otherwise, it informs its children to terminate and
terminates itself (lines 47–49). If it does not need to backtrack, ai determines the next

ai → aj∶RESD_REQ(di, dj), aj ∈ AP(ai)

ai → aj∶RESD(rij, dj), aj ∈ C(ai) ∪ PC(ai)

(23)rij = fij(di, dj) − min
d�
j
∈Dj

fij(di, d
�
j
)

4 When the next feasible assignment d′
i
 does not exist, a

i
 stops here, does nothing and waits for BACK-

TRACK messages for the assignment d′′
i
 before d

i
 from its children.

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 15 of 42 50

feasible assignment d′
i
 for ac (lines 52–58). Specifically, if d′

i
 exists and ai has received

all RESD messages from AP(ai) for d′
i
 , it informs ac to explore d′

i
 (lines 53–56). Other-

wise, ai requests the residual constraint costs for d′
i
 if it has not done (lines 57–58).

Fig. 3 Pseudo code of search phase (message passing)

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 16 of 42

4.4 Privacy of PT‑ISABB

Privacy preserving is one of the main motivations for solving constraint problems in a dis-
tributed manner, since agents would not like their private information to be revealed. In
[22], Faltings et al. distinguished among four notions of private information in distributed
constraint reasoning. These four notions include agent privacy where each agent does not
know the identity or even the existence of its non-neighbors, topology privacy where each
agent has no idea of the topology of the constraint graph that it is not involved, constraint
privacy where each agent has no knowledge about the constraints that it is not involved,
and decision privacy where each agent does not know the final assignments to the vari-
ables that it does not control. Additionally, they also presented several versions of DPOP
to provide strong privacy guarantees. Recently, several efforts have been made to pro-
vide strong privacy guarantees to existing DCOP and ADCOP algorithms by the means
of cryptographic techniques. P-SyncBB [16] was proposed as a privacy-preserving Syn-
cBB for DCOPs while respecting topology, constraint, and decision privacy. P-RODA [17]
came out as a region optimal framework for local search algorithms for both DCOPs and
ADCOPs to preserve constraint and partial decision privacy.

Fig. 4 Pseudo code of search phase (auxiliary functions)

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 17 of 42 50

Instead of providing strong privacy guarantees, we devote to reduce the amount of
constraint privacy loss when optimally solving ADCOPs with the search strategy. This is
achieved by improving the pruning efficiency with initial tight bounds derived from the
inference phase and an estimation reporting mechanism. For evaluating the performance
of different ADCOP algorithms on the constraint privacy protecting, we use entropy as the
measure metric to quantify the privacy constraints loss. In [2], the entropy was introduced
to measure the privacy loss in DCSPs. Specifically, for each agent ai , the entropy measures
the amount of the missing information about its constraints shared with its neighbors in
bits, and can be defined by:

where N(ai) is the neighbors of ai , Sij is the set of possible states of the constraint between
ai and its neighbor aj , and ps is the probability of the state s ∈ Sij . Assume that all the states
∀s ∈ Sij have equal probability for a simple case (i.e., ps =

1

|Sij| ,∀s ∈ Sij), then Eq. (24) can
be rewritten as:

Thus, to quantify the amount of privacy violation of an algorithm, we only need to con-
sider the different value between the entropy that measures their initial states before the
algorithm starts and the entropy after the algorithm terminates for all agents.

Similar to [15], the privacy loss is computed for distributed asymmetric MaxCSPs. In
an asymmetric MaxCSP, the number of possible states for the constraint between ai and
aj is 2|Di||Dj| at the beginning of the algorithm and 2qij at the end of the algorithm. Here,
qij equals the number of value pairs {(xi, di), (xj, dj)} for which the constraint cost is still
unknown after the algorithm terminates. Thus, the amount of privacy loss incurred by an
ADCOP algorithm can be computed by:

Next, we will analyze where the constraint privacy is leaked by the message passing
during the running of PT-ISABB. A COST message from agent ai to its parent P(ai) would
cause a direct privacy loss on the constraint between them on ai ’s side in the worst case.

(24)Hi = −
∑

aj∈N(ai)

∑
s∈Sij

ps log2 ps

(25)

Hi = −
∑

aj∈N(ai)

∑
s∈Sij

1

|Sij| log2
1

|Sij|

= −
∑

aj∈N(ai)

|Sij| 1

|Sij| log2
1

|Sij|
=

∑
aj∈N(ai)

log2 |Sij|

(26)

1

�A�
�
ai∈A

∑
aj∈N(ai)

log2 2
�Di��Dj� −

∑
aj∈N(ai)

log2 2
qij

∑
aj∈N(ai)

log2 2
�Di��Dj�

= 1 −
1

�A�
�
ai∈A

∑
aj∈N(ai)

log2 2
qij

∑
aj∈N(ai)

log2 2
�Di��Dj�

= 1 −
1

�A�
�
ai∈A

∑
aj∈N(ai)

qij∑
aj∈N(ai)

�Di��Dj�
.

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 18 of 42

That is because the elimination of variable xi is performed by its parent agent P(ai) , and
P(ai) can easily figure out which pairs of assignments in the received cost table are feasi-
ble. More specifically, as for the constraint enforced on ai ’s side, P(ai) can directly deduce
the feasible assignments from the zero entries of the cost table sent by ai . A CPA message
from P(ai) to ai gives away a small amount of information since ai can infer that the con-
straints between ai and its direct ancestors are always feasible when the pessimistic accu-
mulated estimation of xi equals zero (i.e., EstRepi(xi)+ = 0). Similarly, these constraints
are proven to be infeasible when the optimistic accumulated estimation of xi equals the
number of its direct ancestors (i.e., EstRepi(xi)− = |AP(ai)|). A BACKTRACK message
also leaks a negligible amount of information since the privacy loss happens only by the
messages with the reported optimal cost equal to zero. A RESD_REQ message reveals no
information as it only contains the assignment of the message sender and message receiver.
Another significant information leak may be incurred by RESD messages. A RESD mes-
sage from the (pseudo) parent aj ∈ AP(ai) to ai contains a direct revelation of the constraint
cost for the specific assignment of xi and xj if the optimistic accumulated estimation for
xi equals zero (i.e., EstRepi(xi)− = 0). Otherwise, the direct revelation happens when the
received residual constraint costs are non-zero.

4.5 Trace

In this subsection, we will take Fig. 1 as an example to show the trace of PT-ISABB.
Cycle 1 After constructing a pseudo tree shown in Fig. 1b, given k = 2 , the inference

phase begins with a3 and a4 sending their local cost tables to a2 via COST messages (lines
1–3, 11–14).

where util±
4→2

= f42 and util±
3→2

= (f31 ⊗ f32)⊥x1
 which are presented in Table 1(a) and (b),

respectively. Note that x1 is the dimension dropped by a3 since dims(f31 ⊗ f32) > k when
computing the cost tables util±

3→2
.

a4 → a2∶COST(util
±
4→2

)

a3 → a2∶COST(util
±
3→2

)

Table 1 The cost tables propagated in the inference phase

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 19 of 42 50

Cycle 2 When receiving COST messages from a3 and a4 , a2 joins the received cost tables
with f23 and f24 , and eliminates x3 and x4 , respectively.

Afterwards, it computes the joint cost tables util±
2→1

= f21 ⊗ util3±
2

⊗ util4±
2

 (line 5) which
is presented in Table 1(c). Since |dims(util±

2→1
)| = k , it directly sends util±

2→1
 to a1 (lines

9–10, 11–14).

util4±
2

= (util±
4→2

⊗ f24)⊥x4
, util3±

2
= (util±

3→2
⊗ f23)⊥x3

a2 → a1∶COST((util
±
2→1

)

Table 2 The cost tables stored in a1 and a2

x2 util
4−
2

util
4+
2

(a) util4±
2

 0 5 8
 1 8 11

x2 util
3−
2

util
3+
2

(b) util3±
2

 0 7 14
 1 10 15

x1 util
2−
1

util
2+
1

(c)util2±
1

 0 19 36
 1 27 50

Table 3 ai ’s high costs and its own bounds

Cycle(a
i
) 3(a1) 4, 6(a2) 7(a3) 3(a4) 9(a3) 9(a4) 11(a3)

di 0 1 0 1 0 1 0 1 0 1 0 1 0 1
high_costi(di) 0 0 5 3 11 14 5 4 15 14 5 4 15 19
ubi(di) 36 50 34 36 20 23 9 8 15 23 5 8 15 19
lbi(di) 19 27 19 23 11 14 5 4 15 14 5 4 15 19
U Bi 36 34 20 8 15 5 15
LBi 19 19 11 4 14 4 15

Cycle(a
i
) 11(a4) 12, 14(a2) 15(a3) 15(a4) 16(a2) 17(a1) −

di 0 1 0 1 0 1 0 1 0 1 0 1 – –
high_costi(di) 5 8 5 3 14 15 8 7 5 3 0 0 – –
ubi(di) 5 8 25 36 21 22 12 11 25 36 25 50 – –
lbi(di) 5 8 25 23 14 15 8 7 25 ∞ 25 27 – –
U Bi 5 25 21 11 25 25 –
LBi 5 23 14 7 25 25 –

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 20 of 42

Cycle 3 Once receiving a COST message from a2 , a1 calculates util2±
1

 by:

Since a1 has received all the COST messages from its children, the inference phase finishes
and the inference results util4±

2
 , util3±

2
 and util2±

1
 stored in the corresponding agents a1 and a2

are presented in Table 2.
Then, the search phase begins with a1 who initializes its related variables according

to Eqs. (15–21) as shown in Cycle 3 of Tables 3 and 4 (lines 7–8, 15–16, 63–66). Since
LB1 < min(TH1,UB1) (i.e., 19 < min(∞, 36)), a1 sends a CPA message with its first fea-
sible assignment (x1, 0) , threshold TH2 and estimation report EstRep2 to a2 (lines 17–18).

where TH2 = 36 and EstRep2 = {(⟨x2−, 1⟩, ⟨x2+, 1⟩), (⟨x3−, 2⟩, ⟨x3+, 7⟩)} are computed
according to Eqs. (22) and (14), respectively.

Cycle 4 When receiving a CPA message from a1 , a2 stores the received
Cpa2 = {(x1, 0)} , TH2 and EstRep2 , and then initializes its related variables as
shown in Cycle 4 of Tables 3 and 4 (lines 19–20). Since LB2 < min(UB2, TH2) (i.e.,
19 < min(34, 36)), a2 finds its first feasible assignment (x2, 0) and requests the residual
constraint cost of f12 via a RESD_REQ message to a1 (lines 23–26).

Cycle 5 Upon receipt of a RESD_REQ message from a2 , a1 calculates the residual
cost r12 = 0 by Eq. (23) and sends that cost to a1 via a RESD message (line 27).

Cycle 6 After receiving a RESD message along with r12 = 0 , a2 does not update its
related variables and sends Cpa2 ∪ {(x2, 0)} to a3 and a4 via CPA messages.

Here, EstRep3 = {⟨x−
3
, 3⟩, ⟨x+

3
, 12⟩} and EstRep4 = {⟨x−

4
, 3⟩, ⟨x+

4
, 7⟩}.

Cycle 7 When receiving CPA messages from a2 , a3 and a4 initialize their related vari-
ables as shown in Cycle 7 of Table 3, find their first feasible assignments ((x3 = 0) and
(x4 = 0)) and requests the residual constraint costs of f24 , f13 and f23.

util2±
1

= (util±
2→1

⊗ f12 ⊗ f13⊥x3
)⊥x2

a1 → a2∶CPA({(x1, 0)}, TH2,EstRep2)

a2 → a1∶RESD_REQ(0, 0)

a2 → a1∶RESD(r12 = 0, 0)

a2 → a3∶CPA({(x1, 0), (x2, 0)},TH3 = 24,EstRep3)

a2 → a4∶CPA({(x1, 0), (x2, 0)},TH4 = 20,EstRep4)

Table 4 ai ’s bounds for its
children

Cycle(a
i
) 3(a1) 4, 6(a2) 12, 14(a2) 16(a2) 17(a1)

di 0 1 0 1 0 1 0 1 0 1
ubc

i
(di) 36 50 21 22 15 22 15 22 25 50

– – 8 11 5 11 5 11 – –
lbc

i
(di) 19 27 9 12 15 12 15 ∞ 25 27

– – 5 8 5 8 5 8 – –

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 21 of 42 50

Cycle 8 When receiving RESD_REQ messages from a4 and a3 , a1 and a2 reply with
corresponding constraint residual costs just like a1 in Cycle 5.

Cycle 9 After receiving the residual constraint costs, a3 and a4 update their
related variables as shown in Cycle 9 of Table 3. Since LB4 < min(UB4, TH4) and
LB3 < min(UB3, TH3) , they switch to their next feasible assignment ((x3 = 1) and
(x4 = 1)) and request the residual constraint costs of f24 , f13 and f23.

Cycle 10 When receiving RESD_REQ messages from a4 and a3 , a1 and a2 response
with corresponding constraint residual costs.

Cycle 11 After receiving the residual constraint costs, a4 and a3 update their related
variables as shown in Cycle 11 of Table 3. Since UB3 = LB3 and UB4 = LB4 , both a4
and a3 backtrack with their optimal costs and optimal partial assignments to a2 (lines
31–32).

where d∗
4
= argmind4∈D4

ub4(d4) = 0 and d∗
3
= argmind3∈D3

ub3(d3) = 0.
Cycle 12 When receiving BACKTRACK messages for (x2 = 0) from a4 and

a3 , a2 updates the bounds for a4 and a3 with the reported costs (shown in Cycle
12 of Tables 3 and 4) and merges the received subproblem assignments (i.e.,
Spa2(0) ∪ Spa3 ∪ Spa4 = {(x2, 0), (x3, 0), (x4, 0)}) (line 45). Since LB2 < UB2 , a2 switches
to its next feasible assignment (x2 = 1) and requests the residual constraint cost of f12.

Cycle 13 When receiving a RESD_REQ message from a2 , a1 replies with r12 via a
RESD message.

Cycle 14 After receiving r12 = 0 , a2 does not update its related variables and sends
Cpa2 ∪ {(x2, 1)} to a3 and a4 via CPA messages.

a4 → a2∶RESD_REQ(0, 0)

a3 → a1∶RESD_REQ(0, 0)

a3 → a2∶RESD_REQ(0, 0)

a2 → a4∶RESD(r24 = 0, 0)

a1 → a3∶RESD(r13 = 0, 0)

a2 → a3∶RESD(r23 = 4, 0)

a4 → a2∶RESD_REQ(0, 1)

a3 → a1∶RESD_REQ(0, 1)

a3 → a2∶RESD_REQ(0, 1)

a2 → a4∶RESD(r24 = 4, 1)

a1 → a3∶RESD(r13 = 5, 1)

a2 → a3∶RESD(r23 = 0, 1)

a4 → a2∶BACKTRACK(opt4 = ub4(d
∗
4
) = 5, Spa4 = {(x4, d

∗
4
)})

a3 → a2∶BACKTRACK(opt3 = ub3(d
∗
3
) = 15, Spa3 = {(x3, d

∗
4
)})

a2 → a1∶RESD_REQ(0, 1)

a2 → a1∶RESD(r12 = 0, 1)

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 22 of 42

where EstRep3 = {⟨x−
3
, 5⟩, ⟨x+

3
, 12⟩} and EstRep4 = {⟨x−

4
, 5⟩, ⟨x+

4
, 9⟩}.

Cycle 15 When receiving CPA messages from a2 , a3 and a4 store the received contents
and initialize their related variables as shown in Cycle 15 of Table 3. Since LB3 = TH3
(i.e., the received Cpa3 is infeasible), a3 backtracks to a2 (lines 31–32, 78–79). a4 finds its
first feasible assignment (x4, 0) as lb4(0) < min(TH4,UB4) , and requests the residual con-
straint cost of f42 via a RESD_REQ message.

Cycle 16 When receiving a BACKTRACK message for (x2, 1) from a3 (assume that the
BACKTRACK message from a3 arrives earlier than the RESD_REQ message from a4),
a2 merges Spa3 and updates its bounds as shown in Cycle 16 of Tables 3 and 4. Since
LB2 = UB2 , a2 sends a BACKTRACK message to a1 and STOPEXPLORE messages to a3
and a4 , sleeps and ignores the RESD_REQ message from a4.

Cycle 17 When receiving STOPEXPLORE messages from a2 , a3 and a4 sleep and wait
CPA messages to wake them up. When receiving a BACKTRACK message for (x1, 0) from
a2 , a1 merges Spa2 (i.e., Spa1(0) ∪ Spa2 = {(x1, 0), (x2, 0), (x3, 0), (x4, 0)}) and updates its
bounds as shown in Cycle 17 of Tables 3 and 4. Then, it finds the optimal solution (i.e.,
the full assignment {(x1, 0), (x2, 0), (x3, 0), (x4, 0)} with the cost to 25), terminates itself and
informs a2 to stop via a TERMINATE massage since LB1 = UB1.

Cycle 18–19 After receiving a TERMINATE message from a1 , a2 stops itself and sends
TERMINATE messages to a3 and a4 . Once receiving TERMINATE messages from a2 , a3
and a4 stop themselves. Finally, the algorithm terminates since all the agents have stopped.

5 Theoretic results

In this section, we theoretically show the correctness and completeness of PT-ISABB in
Sect. 5.1, and then prove that the lower bounds in PT-ISABB are at least as tight as the
ones in AsymPT-FB when its maximal dimension limit k = w∗ + 1 in Sect. 5.2. Finally, we
analyze the complexity of PT-ISABB in Sect. 5.3.

5.1 Correctness

In this subsection, we first prove the termination and optimality, and further establish the
completeness of PT-ISABB.

Lemma 1 PT-ISABB will terminate after a finite number of iterations.

a2 → a3∶CPA({(x1, 0), (x2, 1)},TH3 = 14,EstRep3)

a2 → a4∶CPA({(x1, 0), (x2, 1)},TH4 = 10,EstRep4)

a3 → a2∶BACKTRACK(opt3 = ∞, Spa3 = �)

a4 → a2∶RESD_REQ(1, 0)

a2 → a1∶BACKTRACK(opt2 = 25, Spa2 = {(x2, 0), (x3, 0), (x4, 0)})

a2 → a3∶STOPEXPLORE()

a2 → a4∶STOPEXPLORE()

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 23 of 42 50

Proof Directly from the pseudo codes, the inference phase will terminate since it only
needs a linear number of messages. Thus, to prove the termination, it is enough to show
that the same partial assignment cannot be explored twice in the search phase, i.e., an agent
will not receive two identical Cpas. Obviously, the claim holds for the root agent since it
does not receive any CPA message. For an agent and a given Cpa from its parent, it will
send several CPA messages to each child. Since each of them contains the different assign-
ments of the agent (lines 24, 35, 39, 53, 67–70), the Cpas sent to the child are all different.
Therefore, the termination is hereby guaranteed. ◻

Lemma 2 For an agent ai and a given Cpai , cost(Spai) , the cost incurred by any assignment
Spai to the sub-tree rooted at ai with the assignment (xi, di) , is no smaller than the corre-
sponding lower bound lbi(di) . Here, cost(Spai) =

∑
al∈{ai}∪Desc(ai)

∑
aj∈AP(al)

fjl(dj, dl)+

flj(dl, dj) where dl and dj is the assignment of xl and xj in Cpai or Spai , respectively.

Proof This lemma will be proved by the following two cases.
Case 1 If ai is a leaf agent, cost(Spai) can be rewritten by:

Case 2 If it is a non-leaf agent, ai will replace the original lower bound with the actual
cost reported by ac after receiving a BACKTRACK message for di from ac ∈ C(ai) (line
45). Thus, to prove the lemma, it is sufficient to show that the initial lower bound lbc

i
(di) is

no greater than the actual cost of Spac,∀ac ∈ C(ai) , where Spac ⊂ Spai is the assignment of
the sub-tree rooted at ac.

Consider the induction basis, i.e., ai ’s children are leaf agents. For each child ac ∈ C(ai) ,
we have

cost(Spai) =
∑

aj∈AP(ai)

fij(di, dj) + fji(dj, di)

≥
∑

aj∈AP(ai)

fij(di, dj) +
∑

aj∈AP(ai)

min
xi

fji(dj, xi)

=
∑

aj∈AP(ai)

fij(di, dj) + EstRepi(xi)
−

≤ lbi(di)

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 24 of 42

The equation in the fourth to the fifth step holds when the maximal dimension limit
k ≥ |Sep(ai)| + 1 . Since ac is a leaf agent, we have Desc(ac) = � , and hence the equation in
the sixth to the last step holds. Thus, the lemma holds for the basis.

Assume that the lemma holds for all ac ∈ C(ai) . Next, we are going to show the lemma
holds for ai as well. For each child ac ∈ C(ai) , we have

cost(Spac) =
�

aj∈AP(ac)

fjc(dj, dc) + fcj(dc, dj)

≥ min
xc

⎛⎜⎜⎝
�

aj∈AP(ac)

fjc(dj, xc) +
�

aj∈AP(ac)

fcj(xc, dj)

⎞⎟⎟⎠

= min
xc

⎛
⎜⎜⎝
fic(di, xc) +

�
aj∈AP(ac)

fcj(xc, dj) +
�

aj∈PP(ac)

fjc(dj, xc)

⎞
⎟⎟⎠

≥ min
xc

⎛⎜⎜⎝
fic(di, xc) +

�
aj∈AP(ac)

fcj(xc, dj)

⎞⎟⎟⎠
+

�
aj∈PP(ac)

min
xc

fjc(dj, xc)

≥ utilc−
i
(Cpai[Sep(ac)], di) +

�
aj∈PP(ac)

min
xc

fjc(dj, xc)

= utilc−
i
(Cpai[Sep(ac)], di) + EstRepi(xc)

−

= lbc
i
(di)

cost(Spac) =
∑

ak∈{ac}∪Desc(ac)

∑
aj∈AP(ak)

fjk(dj, dk) + fkj(dk, dj)

=
∑

aj∈AP(ac)

fcj(dc, dj) + fjc(dj, dc) +
∑

ak∈Desc(ac)

∑
aj∈AP(ak)

fjk(dj, dk) + fkj(dk, dj)

=
∑

aj∈AP(ac)

fcj(dc, dj) + fjc(dj, dc)

+
∑

ac� ∈C(ac)

∑
ak∈Desc(ac�)∪{ac� }

∑
aj∈AP(ak)

fjk(dj, dk) + fkj(dk, dj)

=
∑

aj∈AP(ac)

fcj(dc, dj) + fjc(dj, dc) +
∑

ac� ∈C(ac)

cost(Spac�)

≥
∑

aj∈AP(ac)

fcj(dc, dj) + fjc(dj, dc) +
∑

ac� ∈C(ac)

lbc
�

c
(dc)

≥ fic(di, dc) +
∑

aj∈AP(ac)

fcj(dc, dj) +
∑

ac� ∈C(ac)

lbc
�

c
(dc) +

∑
aj∈PP(ac)

min
xc

fjc(dj, xc)

= fic(di, dc) +
∑

aj∈AP(ac)

fcj(dc, dj) +
∑

ac� ∈C(ac)

lbc
�

c
(dc) + EstRepi(xc)

−

= fic(di, dc) +
∑

aj∈AP(ac)

fcj(dc, dj) +
∑

ac� ∈C(ac)

(
utilc

�−

c
(Cpai[Sep(ac�)], dc)

+
∑

al∈Desc(ac�)∪{ac� }

EstRepi(xl)
−

)
+ EstRepi(xc)

−

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 25 of 42 50

Since Desc(ac) = {aj|∀aj ∈ Desc(a�
c
) ∪ {a�

c
},∀ac� ∈ C(ac)} , all the terms about the opti-

mistic accumulated estimations can be combined. That is,

which establishes the lemma. ◻

Lemma 3 For an agent ai and a given Cpai , the cost incurred by any assignment Spai to
the sub-tree rooted at ai with the assignment (xi, di) , is no greater than the corresponding
upper bound ubi(di).

Proof To avoid redundancy, we omit the full proof for this lemma, which is very similar to
the proof of Lemma 2. The main difference is that the minimal cost tables and optimistic
accumulated estimations are replaced by the maximal cost tables and pessimistic accumu-
lated estimations. ◻

Proposition 1 For an agent ai and a given Cpai , the cost incurred by the optimal sub-
problem assignment Spai(d∗i) equals ai’s lower bound LBi and upper bound UBi , i.e.,
LBi = cost(Spai(d

∗
i
)) = UBi.

Proof Based on line 75, the condition for ai reporting Spai(d∗i) is LBi = UBi . Further,
according to lines 76–77 and Eq. (21), we can conclude that ubi(d∗i) = UBi = LBi . Since
lbi(d

∗
i
) ≥ max

di∈Di

lbi(di) = LBi , ubi(d∗i) ≤ min
di∈Di

ubi(di) = UBi and lbi(d∗i) ≤ ubi(d
∗
i
) by Eqs. (18–

21), we have ubi(d∗i) = lbi(d
∗
i
) = LBi = UBi . Besides, it has been proved in Lemmas 2 and

3 that lbi(d
∗
i
) ≤ cost(Spa∗

i
) and cost(Spa∗

i
) ≤ ubi(d

∗
i
) . Thus, we have

LBi = cost(Spai(d
∗
i
)) = UBi and the proposition is proved. ◻

Lemma 4 For an agent ai and a given Cpai , any assignment to the sub-tree rooted at ai
with cost greater than the minimal of THi and UBi cannot be a part of a solution with cost
smaller than the global upper bound.

Proof We will prove recursively by showing that for a partial assignment Spai to the sub-
tree rooted at ai with cost(Spai) > min(THi,UBi) , any partial assignment Spaj ⊃ Spai to the
sub-tree rooted at aj will have cost(Spaj) > min(THj,UBj) where aj = P(ai) . Note that THi
is a threshold received from aj via a CPA message (line 19) and it has been proved in
Proposition 1 that UBi = cost(Spai) when ai backtracks to aj . Thus, ai cannot backtrack by

cost(Spac) ≥ fic(di, dc) +
�

aj∈AP(ac)

fcj(dc, dj) +
�

ac� ∈C(ac)

utilc
�−

c
(Cpai[Sep(ac�)], dc)

+
�

al∈Desc(ac)∪{ac}

EstRepi(xl)
−

≥ min
xc

⎛⎜⎜⎝
fic(di, dc) +

�
aj∈AP(ac)

fcj(xc, dj) +
�

ac� ∈C(ac)

utilc
�−

c
(Cpai[Sep(ac�)], xc)

⎞⎟⎟⎠
+

�
al∈Desc(ac)∪{ac}

EstRepi(xl)
−

= utilc−
i
(Cpai[Sep(ac)], di) +

�
al∈Desc(ac)∪{ac}

EstRepi(xl)
−

= lbc
i
(di)

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 26 of 42

reporting Spai with its cost greater than THi since there must exist a better partial assign-
ment whose cost smaller than THi . If THi is received from aj , according to line 72, we have

Thus, cost(Spai) > min(THi,UBi) necessarily means that any partial assignment
Spaj ⊃ Spai will have cost(Spaj) > min(THj,UBj) . ◻

Theorem 1 PT-ISABB is complete.

Proof Immediately from Lemmas 1–4, the algorithm will terminate and all pruned assign-
ments are suboptimal. Thus, PT-ISABB is complete. ◻

5.2 Lower bound tightness

Property 1 For an agent ai and a given Cpai , the initial lower bound lbc
i
(di) of ac ∈ C(ai)

for di is at least as tight as the one in AsymPT-FB when the maximal dimension limit equals
w∗ + 1 . Here, w∗ is the induced width of the pseudo tree.

Proof In AsymPT-FB, the lower bound for ac after receiving all the LB_Report messages
from agents in the subtree rooted at ac is given by the sum of the best single-side local costs
of ac ’s descendants under Cpai . That is,

For the sake of clarity, we denote the vector of xc and its descendant variables as �
�
 . Next,

we will show lbc
i
(di) ≥ SubtreeLBc

i
(di) . Since k = w∗ + 1 , the inference phase does not drop

any dimension. Thus, we have

min(THj,UBj) = THi + high_costj(dj) +
∑

ac∈C(aj)∧c≠i

lbc
j
(dj)

SubtreeLBc
i
(di) =

∑
aj∈Desc(ac)

min
xj

∑
al∈Sep(ac)∩PP(aj)

fjl(xj, dl)

+ min
xc

∑
al∈AP(ac)

fcl(xc, dl)

lbc
i
(di) = utilc−

i
(Cpai[Sep(ac)], di) +

�
aj∈Desc(ac)∪{ac}

EstRepi(xj)
−

≥ utilc−
i
(Cpai[Sep(ac)], di)

= min
�
�

�
aj∈Desc(ac)

⎛⎜⎜⎝
�

al∈AP(aj)∩Sep(ac)

fjl(xj, dl) +
�

al∈AP(aj)∩Desc(ai)

fjl(xj, xl)

+
�

al∈C(aj)

fjl(xj, xl) +
�

al∈PC(aj)

min
xl

fjl(xj, xl)

⎞⎟⎟⎠
+

�
al∈AP(ac)

fcl(xc, dl)

+ fic(di, xc) +
�

al∈C(ac)

fcl(xc, xl) +
�

al∈PC(ac)

min
xl

fcl(xc, xl)

≥ min
�
�

�
aj∈Desc(ac)

�
al∈AP(aj)∩Sep(ac)

fjl(xj, dl) +
�

al∈AP(ac)

fcl(xc, dl)

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 27 of 42 50

Since xc ∈ �
�
 and AP(aj) ⊃ PP(aj) , the right-hand side of the inequality in the last step can

be further reduced. Thus, we have

which concludes the property. ◻

5.3 Complexity

Since an agent ai stores utilc±
i

 , lbc
i
(di) and ubc

i
(di) for each child and the bounds

including lbi(di), ubi(di),LBi and UBi , the overall space complexity is
O(|C(ai)|dmin (k,|Sep(ai)|+1)

max + (|C(ai)| + 1)|Di|) where dmax = maxaj∈Sep(ai) |Dj| . Since the
dimension size of each outgoing COST message is no greater than k, the size of an COST
message from ai is O(dmin (k,|Sep(ai)|+1)

max) . For a CPA message, it consists of the assignment of
each agent, a threshold and all the optimistic and pessimistic accumulated estimations of
the descendants of that agent. Thus, the size of a CPA message is O(|A|). Other messages
including RESD_REQ, RESD, BACKTRACK, STOPEXPLORE and TERMINATE carry
several scalars and thus they only require O(1) space.

Different from standard DPOP/ADPOP, PT-ISABB only requires |A| − 1 messages in
the inference phase since it does not have the value propagation phase. Like any other
search-based complete algorithms, the search phase produces d|A|max messages where
dmax = maxaj∈A |Dj|.

6 Bounded error approximations

In this section, we present two suboptimal variants of PT-ISABB to trade solution quality
for coordination overheads, where the solution cost is bounded by a user-specified error.
More specifically, we adapt PT-ISABB as its suboptimal versions with the Absolute Error
Mechanism of ADOPT [26] and Relative Error Mechanism of BnB-ADOPT [40]. Here,
the Absolute Error Mechanism allows users to specify an absolute error bound on the solu-
tion cost while the Relative Error Mechanism allows users to specify a relative error bound.

To implement the Absolute Error Mechanism and Relative Error Mechanism on top of
asynchronous search-based complete algorithms (e.g., ADOPT and BnB-ADOPT), only
the root agent makes the change to relax the termination condition. However, this strategy
is not suitable for our case since the root agent cannot update its lower bounds and upper
bounds quickly and each agent backtracks only if it has found the solution to its subprob-
lem. Thus, to adapt these two error mechanisms to PT-ISABB, each agent ai ∈ A needs to
maintain the error bound gapi to relax its backtracking condition (lines 21, 31 and 46). That
is,

lbc
i
(di) ≥ min

�
�
�xc

∑
aj∈Desc(ac)

∑
al∈AP(aj)∩Sep(ac)

fjl(xj, dl) +min
xc

∑
al∈AP(ac)

fcl(xc, dl)

≥ min
�
�
�xc

∑
aj∈Desc(ac)

∑
al∈PP(aj)∩Sep(ac)

fjl(xj, dl) +min
xc

∑
al∈AP(ac)

fcl(xc, dl)

≥
∑

aj∈Desc(ac)

min
xj

∑
al∈Sep(ac)∩PP(aj)

fjl(xj, dl) +min
xc

∑
al∈AP(ac)

fcl(xc, dl)

= SubtreeLbc
i
(di)

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 28 of 42

Besides, several necessary modifications have to be made in the BACKTRACK mes-
sage propagation and disposition.

• When ai sends a BACKTRACK, the condition that claims Cpai to be feasible changes
from LBi = UBi ∧ LBi < THi to LBi ≥ UBi − gapi ∧ LBi < THi . Besides, the content
forwarded to its parent changes from (ubi(d∗i), Spai(d

∗
i
)) to (lbi(d∗i), ubi(d

∗
i
), Spai(d

∗
i
)) if

Cpai is feasible. Otherwise, the context changes from (∞, �) to (∞,∞, �) (line 75-79).
• When ai receives a BACKTRACK from ac , the bound update process

changes from lbc
i
(di) ← max(lbc

i
(di), optc) and ubc

i
(di) ← min(ubc

i
(di), optc) to

lbc
i
(di) ← max(lbc

i
(di), lbc) and ubc

i
(di) ← min(ubc

i
(di), ubc) (line 45).

Besides, it is noteworthy that the two suboptimal version of PT-ISABB could terminate
without reaching any complete solution when the gap is sufficiently large (i.e.,
gapi ≥ UBi − LBi). The issue can be voided by assuming that each agent aj ∈ A holds a
default value d0

j
 for its variable xj at the beginning of the algorithm. When a very large gapi

is assigned for a non-root agent ai , ai backtracks with the assignment Spa0
i
 where

Spa0
i
=
⋃

aj∈Desc(ai)
{xj, d

0
j
} ∪ {xi, d

∗
i
} and d∗

i
= argmindi∈Di

ubi(di).

Lemma 5 For a non-root agent ai , given gapi ≥ UBi − LBi , Spa0
i
 satisfies

LBi ≤ cost(Spa0
i
) ≤ LBi + gapi.

Proof According to Lemmas 2 and 3, it can be concluded that cost(Spa0
i
) ≥ lbi(d

∗
i
)

and cost(Spa0
i
) ≤ ubi(d

∗
i
) where d∗

i
= argmindi∈Di

ubi(di) . Further, based on Eqs. (20)
and (21), we have lbi(d∗i) ≥ LBi and ubi(d∗i) = UBi . Thus, it can be concluded that
LBi ≤ cost(Spa0

i
) ≤ UBi . Since gapi ≥ UBi − LBi , we have LBi ≤ cost(Spa0

i
) ≤ LBi + gapi .

 ◻

6.1 Absolute error Mechanism

The absolute error mechanism of ADOPT requires users to specify an absolute error bound
b (0 ≤ b < ∞) such that the difference between the solution cost and the optimal solution
cost is no greater than b. However, for PT-ISABB, b cannot be directly applicable to relax
the backtracking condition for non-root agents since their optimal subproblem solution
costs are strictly less than the optimal solution cost. Thus, based on the inference results
produced during the inference phase, we introduce an absolute error bound allocation
mechanism to compute an absolute error bound bi for each agent ai . Specifically, bi is equal
to the user-defined bound b if ai is the root agent. Otherwise, bi is a partition of its parent’s
error bound bP(ai) and received from its parent P(ai) along with the partial assignment Cpai
via a CPA message. That is,

where vi ∈ {utili−
P(ai)

(Cpai), util
i+
P(ai)

(Cpai), util
i+
P(ai)

(Cpai) − utili−
P(ai)

(Cpai)} . The intuition
behind Eq. (28) is that the allocation of bP(ai) to each of its children aj ∈ C(P(ai)) should be
fair. This can be achieved by considering that the allocated error bounds of aj should be

(27)LBi ≥ min(UBi − gapi, THi)

(28)bi = bP(ai) ∗

�
vi∑

ac∈C(P(ai))
vc

�

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 29 of 42 50

proportional to the actual cost of aj ’s subproblem. Here, we adopt the cost tables obtained
in the inference phase to approximate the actual cost which is unknown before aj reports
that cost. Then, the absolute error mechanism can be adapted to PT-ISABB easily by set-
ting ai ’s error bound gapi as follows:

We name the suboptimal variant of PT-ISABB with the absolute error mechanism
PT-ISABBAEM . In PT-ISABBAEM , the root agent ai terminates the search process once the
gap between its upper bound and lower bound is no greater than the user-specified abso-
lute bound (i.e., UBi − LBi ≤ b). As a result, PT-ISABBAEM terminates with a solution cost
(costi) that meets LBi ≤ costi ≤ LBi + b.

6.2 Relative error mechanism

Rather than specifying an absolute error bound on the solution cost, the relative error
Mechanism of BnB-ADOPT allows users to specify a relative error bound � (1 ≤ 𝜌 < ∞)
such that the solution cost should be at most � times larger than the optimal solution cost.
This mechanism can be deployed to PT-ISABB by assigning the variable gapi as follows:

We name the suboptimal variant of PT-ISABB with the relative error mechanism
PT-ISABBREM . In PT-ISABBREM , the root agent ai terminates the search process once the
gap between its upper bound and lower bound is no greater than the error bound gapi (i.e.,
UBi − LBi ≤ gapi = (� − 1) ⋅ LBi). PT-ISABBREM terminates with a solution cost (costi)
that satisfies LBi ≤ costi ≤ � ⋅ LBi.

Proposition 2 For an agent ai and a given Cpai in the two suboptimal variants of PT-
ISABB (PT-ISABBAEM and PT-ISABBREM), the cost incurred by a complete subprob-
lem assignment Spai(d∗i) is no smaller than LBi and no greater than LBi + gapi . That is,
LBi ≤ cost(Spai(d

∗
i
)) ≤ LBi + gapi.

Proof According to lines 76–77, Eqs. (20) and (21), we have
ubi(d

∗
i
) = mindi∈Di

ubi(di) = UBi and lbi(d
∗
i
) ≥ mindi∈Di

lbi(di) = LBi . As it has been
proved in Lemmas 2 and 3 that lbi(d∗i) ≤ cost(Spai(d

∗
i
)) and cost(Spai(d∗i)) ≤ ubi(d

∗
i
)

respectively, we have LBi ≤ cost(Spai(d
∗
i
)) ≤ UBi . Since LBi ≥ min(UBi − gapi, THi) and

LBi < THi by Eq. (27) and the condition of finding Spai(d∗i) (line 75) respectively, we have
LBi ≥ UBi − gapi . Thus, we can conclude that LBi ≤ cost(Spai(d

∗
i
)) ≤ LBi + gapi . ◻

(29)gapi = bi.

(30)gapi = (� − 1) ⋅ LBi.

Table 5 The PT-ISABB variants

Algorithm Variable elimination scheme Cost table propagation scheme

PT-ISABB-A Local elimination Min cost table
PT-ISABB-B Local elimination Both Min and Max cost tables
PT-ISABB-C Non-local elimination Min cost table
PT-ISABB-D Non-local elimination Both Min and Max cost tables

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 30 of 42

Theorem 2 The two suboptimal variants of PT-ISABB (PT-ISABBAEM and PT-ISABBREM)
will terminate when LBi ≤ cost(Spai(d

∗
i
)) ≤ LBi + gapi for the root agent ai , where

cost(Spai(d
∗
i
)) is the cost incurred by the solution Spai(d∗i).

Proof Immediately from Proposition 2, the solution Spai(d
∗
i
) satisfies

LBi ≤ cost(Spai(d
∗
i
)) ≤ LBi + gapi when meeting the termination condition. ◻

7 Experimental evaluations

In this section, to show the strength of non-local elimination and propagating both maximal
and minimal cost tables, we first conduct an ablation study by comparing the four different
optimal versions of PT-ISABB which are detailed in Table 5. Then, we empirically evalu-
ate PT-ISABB and state-of-the-art search-based complete algorithms for ADCOPs includ-
ing SyncABB-1ph, ATWB and AysmPT-FB on random ADCOPs, scale-free networks and
asymmetric MaxDCSPs. To demonstrate the real power of tight bounds established by the
inference phase, we also consider SyncABB-1ph on a pseudo-tree (PT-SABB). Finally, we
compare the two suboptimal variants of PT-ISABB to each other. All the evaluated algo-
rithms are implemented in DCOPSovler,5 the DCOP simulator developed by ourselves. All
the reported experimental results are averaged over 50 randomly generated instances. The
experiments are conducted on an i7-7820x workstation with 32 GB of memory, and we set
the timeout to 15 min for each algorithm.

7.1 Experimental configurations

We benchmark the algorithms with three types of problems, i.e., random ADCOPs, scale-
free networks and random asymmetric MaxDCSPs.

• Random ADCOPs are an asymmetric version of random DCOPs, a general form of the
distributed constraint optimization problems where a set of agents are constrained with
each other randomly [6]. In the experiment, the number of agents and graph density are
varied to evaluate the performance of the complete algorithms (see the detailed config-
urations in Sects. 7.4 and 7.5). Additionally, the constraint costs are uniformly selected
from [0, 100].

• Scale-free networks [1] are networks whose degree distributions follow power laws. In
the experiment, we use Barabási–Albert (BA) model to generate the constraint graph
topology where we set the domain size to 3, the agent number to 16, and an initial agent
number to 10 (i.e., m0 = 10). At each iteration of BA model procedure, a new agent is
connected to m1 other agents with a probability proportional to the number of links that
the existing agents already have, where m1 varies from 2 to 10. The range of constraint
costs in scale-free networks are the same as the ones in random ADCOPs.

• Asymmetric MaxDCSPs are an asymmetric version of MaxDCSPs, a subset of random
DCOPs where all the constraint costs are equal to one [15, 26]. Asymmetric MaxDC-
SPs are classified by the agent number, domain size, graph density and constraint tight-
ness (i.e., the probability for the emergence of a non-zero cost among two value assign-

5 https ://githu b.com/czy92 0/DCOPS ovler .

https://github.com/czy920/DCOPSovler

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 31 of 42 50

ments). In the experiment, we consider asymmetric MaxDCSPs with 10 agents, the
domain size of 10 and the graph density of 0.4, and the tightness varies from 0.1 to 0.8.

7.2 Performance metrics

• Non-Concurrent Logical Operations (NCLOs) [28] is a generalization of NCCCs [43]
based on the concept of atomic operations [14], where a basic operation is not neces-
sarily a constraint check in the search-based complete algorithms. In the experiment,
we use NCLOs as a metric to evaluate hardware-independent runtime where the basic
operations are accesses to cost tables for the inference phase and constraint checks for
the search phase and other competitors.

• The message number is the total number of messages sent by all agents. In the experi-
ment, we use the message number as a metric to measure the communication costs
incurred by an algorithm.

• The size of total information exchanged is the total size of messages exchanged dur-
ing the execution of an algorithm. Since the size of a message is linear to the agent
number in the search phase and other competitors but exponential in its dimension

Table 6 Performance comparison of the PT-ISABB variants given k = 2 force random ADCOPs
(8 ≤ |A| ≤ 18 , |Di| = 3 and p = 0.25)

The best results are shown in bold

Agent number Algorithm Message number Networkload (KB) NCLOs Runtime (ms)

8 A 370.35 3.73 237.19 26.62
B 354.50 3.80 315.81 33.38
C 216.92 2.16 118.81 15.58
D 56.00 0.55 85.65 3.46

10 A 1157.69 13.01 656.15 91.42
B 1135.31 13.18 812.54 102.35
C 732.31 8.24 367.58 62.15
D 576.58 6.67 371.27 46.31

12 A 3928.88 46.30 1690.88 312.42
B 3893.31 46.56 1904.35 356.15
C 2971.73 35.44 1193.92 246.50
D 2807.65 33.60 1249.50 232.35

14 A 17,771.62 228.38 6851.31 1732.27
B 17,768.42 228.89 7138.12 1887.35
C 12,913.15 165.28 4603.42 1211.38
D 12,677.65 162.57 4659.73 1083.35

16 A 205,709.62 2798.58 65,622.88 18,202.08
B 205,654.12 2799.26 66,009.46 20,340.62
C 172,231.27 2342.58 53,152.12 16,387.31
D 171,273.50 2327.88 53,150.50 14,779.04

18 A 1,184,726.46 16,150.03 307,890.77 97,720.81
B 1,184,047.15 16,143.35 308,208.92 98,058.62
C 898,321.54 12,193.97 230,693.65 76,554.12
D 886,177.60 12,089.82 229,888.36 69,072.92

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 32 of 42

size in the inference, we use the size of total information exchanged as an addi-
tional metric to evaluate the communication costs in the experiment.

• Runtime measures the simulated execution time of a distributed algorithm. In more
detail, we simulate the distributed environment by JAVA multi-thread mechanism,
where each agent is simulated by a thread. The runtime is considered as the differ-
ence between the time stamp when the first agent starts and the one when the last
agent terminates.

• Entropy [2] is a metric to quantify the privacy loss in distributed constraints sat-
isfaction problems, measuring the amount of the missing information about each
agent’s local privacy constraints. In the experiment, we adopt the method in [15,
23] to calculate this metric when solving asymmetric MaxDCSPs.

• The normalized cost is the ratio of the solution cost to the optimal solution cost.
We use the metric to quantify the solutions of the two suboptimal variants of PT-
ISABB in the experiment.

Table 7 Performance comparison of the PT-ISABB variants given k = w∗ + 1 for random ADCOPs
(8 ≤ |A| ≤ 18 , |Di| = 3 and p = 0.25)

The best results are shown in bold

Agent number Algorithm Message number Networkload (KB) NCLOs Runtime (ms)

8 A 370.27 3.73 236.77 29.38
B 358.88 3.80 315.85 35.50
C 217.81 2.16 119.04 22.58
D 56.00 0.55 85.65 3.81

10 A 1137.85 12.71 660.85 91.27
B 1117.19 12.96 837.69 106.15
C 556.35 6.39 341.77 54.85
D 307.35 4.14 372.54 24.12

12 A 3409.92 39.34 1687.00 266.35
B 3378.35 40.09 2135.46 316.42
C 1570.69 19.22 933.35 139.58
D 1193.23 16.67 1210.04 101.62

14 A 13,699.42 172.78 5890.38 1236.58
B 13,576.15 174.28 6867.81 1497.62
C 4649.85 59.97 2450.23 468.85
D 4266.62 59.50 3279.46 388.04

16 A 101,986.73 1305.41 36,308.08 8671.31
B 101,815.38 1312.97 42,172.08 9695.62
C 35,529.04 471.18 16,186.73 3402.88
D 34,622.38 485.18 21,888.38 3144.19

18 A 518,513.23 6,685.46 162,332.73 36,623.77
B 518,332.46 6730.11 197,276.46 42,277.85
C 173,486.27 2338.11 77,594.15 14,518.19
D 172,672.69 2468.63 112,518.50 13,977.42

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 33 of 42 50

7.3 Performance comparisons: the optimal variants of PT‑ISABB

Tables 6 and 7 present the performance of the four optimal variants of PT-ISABB given
k = 2 and k = w∗ + 1 on the random ADCOPs where we set the graph density to 0.25, the
domain size to 3 and vary the agent number from 8 to 18. It can be seen that given a fixed k,
the variants with non-local elimination (i.e., PT-ISABB-C and PT-ISABB-D) exhibit great
advantages over these variants with local elimination (i.e., PT-ISABB-A and PT-ISABB-
B) on all the evaluation metrics. This is particularly prominent when there is no limit on
the memory budget. In more detail, the improvement of PT-ISABB-C and PT-ISABB-D
over PT-ISABB-A and PT-ISABB-B is about 20–40% when k = 2 while the improvement
is widened to 50–65% when k = w∗ + 1 . These phenomena indicate that in PT-ISABB, the
inference phase with non-local elimination can provide tighter lower bound, and hereby
lead to efficient pruning and great reduction on the coordination overheads incurred by the
search phase. Additionally, PT-ISABB-A share the similar performance with PT-ISABB-B
while PT-ISABB-D outperforms PT-ISABB-C in terms of the message number, network
load and runtime. That is because the gap in PT-ISABB-D between the upper bounds and
lower bounds is smaller than the one in PT-ISABB-C. As a consequence, each agent in PT-
ISABB-D can exploit the gap effectively to reduce the search efforts.

(a) (b)

(c) (d)

Fig. 5 Performance comparison for random ADCOPs (8 ≤ |A| ≤ 18 , |D
i
| = 3 and p = 0.25)

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 34 of 42

7.4 Performance comparisons: PT‑ISABB and its competitors

For random ADCOPs, we firstly set the graph density to 0.25, the domain size to 3 and
vary the agent number from 8 to 18. Figure 5 presents the performance comparison on dif-
ferent agent numbers. The average induced widths in the experiments are 1–6.84. It can be
observed that as the agent number grows, both the communication and computation over-
heads of all the algorithms increase exponentially. Among them, our algorithms exhibit
great superiorities on all the metrics, which indicates the merit of the hybrid execution of
inference and search. Moreover, PT-ISABB-D produces significantly lower overheads than
AsymPT-FB even with a small dimension limit k (e.g., k = 2). In more detail, PT-ISABB-
D (k = 2) has an advantage over AsymPT-FB by about 88% in the message number and
network load and 75% in the NCLOs and runtime. That is due to the fact that PT-ISABB-
D does not rely on forward bounding which is expensive in message-passing to compute
lower bounds. Also, this phenomenon implies that our algorithm can produce tighter lower
bounds even if the memory budget is relatively low.

Figure 6 gives the results under different graph densities. Specifically, we consider the
random ADCOPs with 8 agents, the domain size of 8 and the graph density varying from
0.25 to 1. The average induced widths here are 1–6. Note that in this configuration, the

(a) (b)

(c) (d)

Fig. 6 Performance comparison for random ADCOPs (|A| = 8 , |D
i
| = 8 and 0.25 ≤ p ≤ 1)

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 35 of 42 50

size of the search space does not change and the complexity is reflected in the topologies.
It can be seen from the figure that all the tree-based algorithms have good performance
on the sparse problems, and the advantages gradually diminish as the density increases.
That is because the density would affect the construction of a pseudo tree and thus influ-
ence the parallelism of search processes. Specifically, the dense problems usually result in
pseudo trees with low branching factors, making those tree-based algorithms require more
messages than SyncABB-1ph. Even so, our proposed PT-ISABB-D still outperforms Syn-
cABB-1ph when the problems are fully connected, which demonstrates the necessity of
tighter lower bounds. As for SynchABB-1ph, it outperforms over ATWB on all the metrics
except the runtime. That is due to the fact that the two-side cost accumulation is achieved
by sending back the Cpa to all the assigned agents sequentially in SynchABB-1ph, while
it is implemented by sending the copy of Cpa to all the assigned agents simultaneously in
ATWB. Additionally, PT-ISABB-D with different k performs similarly on the sparse prob-
lems (p < 0.4), but the performance varies a lot on the dense problems (p ≥ 0.4). That is
because the small induced width of the pseudo tree results in a small set of dimensions that
PT-ISABB would drop during the inference phase when solving a sparse problem.

Figure 7 shows the results on the scale-free networks with different m1 where the aver-
age induced widths in the experiments are 4.5–7.6. We do not include SynchABB-1ph and

(a) (b)

(c) (d)

Fig. 7 Performance comparison on scale-free networks (|A| = 16 , |D
i
| = 3 , m0 = 10 and 2 ≤ m1 ≤ 10)

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 36 of 42

AWTB here since they cannot solve the problems even when m1 = 2 within 15 minutes. It
can be concluded from the figure that PT-ISABB-D outperforms the other competitors, and
the superiorities are widened as the memory budget grows. Besides, although AsymPT-FB
is superior to PT-SABB over the NCLOs and runtime, they perform similarly in terms of
the message number and network load. This phenomenon confirms the fact that forwarding
bounding itself could be expensive in message-passing despite the ability of building tight
lower bounds.

Figure 8 presents the results when solving asymmetric MaxDCSPs with different tight-
ness as the average induced width is 3.92. This configuration neither increases the search
space nor affects the topologies, but instead increases the difficulty of pruning. It can be
seen that all the algorithms except ATWB produce few messages when the tightness is low.
That is because the algorithms can find low upper bounds very quickly to prune most of
the search space on these problems. With the growth of tightness, the number of prohibited
combinations increases and the algorithms can no longer find high-quality upper bounds
promptly. As a result, the algorithms require much more search efforts to exhaust the
search space. Note that SyncABB-1ph and ATWB perform poorly and can only solve the
problems with the tightness up to 0.6, which can attribute to their inability of accelerating

(a) (b)

(c) (d)

Fig. 8 Performance comparison for asymmetric MaxDCSPs (|A| = 10 , |D
i
| = 10 , p1 = 0.4 and

0.1 ≤ p2 ≤ 0.8)

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 37 of 42 50

the search process by exploiting topologies. On the other hand, the tree-based algorithms
divide a problem to several smaller subproblems at each branching agent and search the
subproblems in parallel. Among them, our proposed PT-ISABB-D with k ≥ 4 incurs
much smaller overheads, which demonstrates the effectiveness of the inference phase in
computing tighter lower bounds. In other words, although the lower bounds produced by
PT-ISABB-D are only proved to be as tight as the ones of AsymPT-FB when k = w∗ + 1
according to Property 1, the memory consumption for computing such lower bounds is
much less in practice. Additionally, it can be seen from the figure that PT-SABB-D incurs
smaller communication overheads than AsymPT-FB when solving the problems with low
tightness, which demonstrates forward bounding is expensive in message-passing again.
And it is no surprise to find PT-ISABB with large k requires much more network load,
NCLOs and runtime than the other competitors when solving problems with low tightness.
The reason is that the inference on problems with large domain sizes would be quite expen-
sive, whereas search-based algorithms can find a feasible solution very quickly even if the
lower bounds are poor under the same circumstance.

Figure 9 gives the privacy losses of each algorithm under different tightness, where PT-
ISABB-B (i.e., the local-elimination version of PT-ISABB) is considered in this experi-
ment to compare the performance of the non local-elimination version and local-elimina-
tion version of PT-ISABB on the constraint privacy protecting. Different from the other
competitors, the privacy loss in PT-ISABB-D comes from both the inference phase and
the search phase. As described in Sect. 4.4, the inference phase would cause a half pri-
vacy loss on each tree edge in the worst case as the variable elimination is actually per-
formed by parent agents. In spite of this, it is still a better choice than directly employing
DPOP to solve the problems, which will leak at least half privacy. In the search phase, the
proposed estimation reporting mechanism where parent and pseudo parents only need to
forward their residual constraint costs to their (pseudo) children can reduce the privacy
loss to some degree, but agents can still infer the other-side actual constraint costs. For-
tunately, the loss could be much reduced by efficient pruning. So it is no surprise to see
that our proposed algorithm leaks more privacy than the other competitors when solving

Fig. 9 Privacy loss for asymmetric MaxDCSPs (|A| = 10, |D
i
| = 10, p1 = 0.4 and 0.1 ≤ p2 ≤ 0.8)

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 38 of 42

the problems with low tightness. That is due to the fact that such problems usually have
feasible solutions, and thus most of the entries in a cost table from a child are zero. How-
ever, the advantage of PT-ISABB-D is gradually emerged as the tightness grows. It can be
seen that PT-ISABB-D with k ≥ 4 leaks less privacy than the other competitors when the
tightness is over 0.5. The reason is twofold: one is that with the increase of the tightness
the feasible assignment pairs parents can infer are on the decrease, and the other one is that
the tight lower bounds produced in the inference phase lead to the efficient pruning dur-
ing the search phase. Besides, it is worth mentioning that PT-ISABB-B performs better in
terms of privacy protecting when solving the problems with the tightness under 0.5. That is
because variables are already eliminated before sending cost tables to their parents. There-
fore, parents only know the best cost their children can achieve, but cannot figure out the
corresponding assignments of their children.

7.5 Performance comparisons: the suboptimal variants of PT‑ISABB‑D

We compare the two suboptimal variants of PT-ISABB-D to each other on the sparse and
dense random ADCOPs. Specifically, we consider the random ADCOPs with 24 agents,
the density of 0.15 and the domain size of 3 as the sparse problems, and the ones with 14
agents, the density of 0.6 and the domain size of 3 as the dense problems. Besides, we vary
the relative error bound from 1 to 2 to assess the performance of the two suboptimal vari-
ants. Here, the relative error bound is � for PT-ISABB-DREM or b divided by the optimal
solution cost for PT-ISABB-DAEM . For PT-ISABB-DAEM , we select
vi = utili+

P(ai)
(Cpai) − utili−

P(ai)
(Cpai) since three settings in Eq. (28) lead to the similar trend

in the experiment, and pre-calculate the average optimal solution cost to set the value of b.
In our experiments, the average optimal solution cost is 2741 for spare problems and 4234
for dense problems, respectively.

Figure 10 shows the normalized cost of each algorithm for the sparse and dense prob-
lems under different relative error bounds. Here, the average induced width is 6 for the
sparse problems and 8 for the dense problems. It can be seen that the normalized solution
costs of two suboptimal variants increase as the relative error bound waxes. However, the
solution costs are still much smaller than the error bound. Furthermore, the normalized

(a) (b)

Fig. 10 Normalized costs of the sparse problems (|A| = 24 , |D
i
| = 3 and p = 0.15) and dense problems

(|A| = 14 , |D
i
| = 3 and p = 0.6) under different relative error bound

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 39 of 42 50

solution costs of PT-ISABB-DAEM are always larger than the ones of PT-ISABB-DREM
with the same relative error bound. This is due to the termination condition for two sub-
optimal variants that the root agent ai holds LBi ≤ costi ≤ LBi + gapi where costi is the
solution cost, gapi = (� − 1) ∗ optCosti in PT-ISABB-DAEM and gapi = (� − 1) ∗ LBi in
PT-ISABB-DREM , and optCosti is the optimal solution cost. Since optCosti ≥ LBi , the abso-
lute error bound (gapi) of PT-ISABB-DAEM is no smaller than gapi of PT-ISABB-DREM .
Besides, it can be noticed that PT-ISABB-DAEM with different k have little difference
in the solution cost when the relative error bound is small, but the advantages of large
k appear as the relative error bound waxes. The reason for this is that the gaps between
lower bounds and upper bounds constructed by the inference phase with large k are close
to the user-specified error bound when the specified error bound is very large. This also
happens when using PT-ISABB-DREM with different k to solve the sparse problems, but
there are some differences on the dense problems. This is because the heuristic bounds in
PT-ISABB-DREM with k ≤ 6 do less for the termination of PT-ISABB-DREM since the aver-
age induced width of the dense problems is greater than the one of the sparse problems.
In addition, PT-ISABB-DREM with large k performs unsatisfactory on the dense problems
since the inference phase with large k can produce tight lower bounds to terminate PT-
ISABB-DREM quickly.

(a) (b)

(c) (d)

Fig. 11 Performance comparison of the sparse problems (|A| = 24 , |D
i
| = 3 and p = 0.15) and dense prob-

lems (|A| = 14 , |D
i
| = 3 and p = 0.6) under different relative error bound

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 40 of 42

Figure 11 presents the performance comparison of two suboptimal variants for solving
the sparse and dense problems under different relative error bounds in terms of the message
number and NCLOs. It can be noticed that PT-ISABB-DAEM does not always decrease with
the increase of the relative error bound and PT-ISABB-DAEM with the relative error bound
to 1.2 produces the maximal number of messages and NCLOs. Also, PT-ISABB-DREM
with � = 1 and PT-ISABB-DREM with � = 1.2 require the similar number of messages and
NCLOs. That is due to inefficient pruning during the search phase when the relative error
bound equals 1.2. More precisely, two suboptimal variants can not get low upper bounds
promptly with a large relative error bound, but they still need to find a solution with the
cost that is no greater than 1.2 times the optimal solution cost. Moreover, PT-ISABB-DAEM
produces much more messages and NCLOs than PT-ISABB-DREM with the same k when
the relative error bound is relatively small but this phenomenon changes as the relative
error bound waxes. That is because the absolute error bound allocation mechanism in PT-
ISABB-DAEM [i.e., Eq. (28)] does not allocate the absolute error bounds evenly when the
relative error bound is relatively small, but the allocation gradually becomes even as the
relative error bound waxes. Besides, it can be concluded from Figs. 11a and 10a that the
suboptimal variants with k ≥ 4 can quickly find a solution within the specified error bound
for the sparse problems when the relative error bound is large enough.

8 Conclusion

It is known that DPOP/ADPOP for DCOPs cannot be directly applied to ADCOPs due
to a privacy concern. In this paper, we take ADPOP into solving ADCOPs for the first
time by combining with a tree-based variation of SyncABB-1ph, and present a two-phase
complete algorithm called PT-ISABB. In the inference phase, a non-local elimination ver-
sion of ADPOP is performed to solve a subset of constraints and build look-up tables for
tight lower bounds and upper bounds. In the search phase, a tree-based variation of Syn-
cABB-1ph is implemented to exhaust the search space and an estimation reporting mecha-
nism is introduced to avoid directly disclosing the private constraint costs and compute
complete upper bounds. Furthermore, the two suboptimal variants of PT-ISABB, named
PT-ISABBAEM and PT-ISABBREM , are proposed to allow a desired trade-off between solu-
tion quality and coordination overheads, where PT-ISABBAEM and PT-ISABBREM guar-
antee to find a solution within the user-specified absolute error bound and relative error
bound, respectively. To implement PT-ISABBAEM , we introduce an absolute error bound
allocation mechanism to allocate the user-specified absolute error bound for all the non-
root agents so as to relax their backtracking condition. The experimental results show that
PT-ISABB is markedly superior to state-of-the-art search-based algorithms as well as its
local elimination version and leaks less privacy when solving complex problems. It can
also be seen from the empirical evaluation that the suboptimal variants of PT-ISABB can
find a solution within the user-specified bounded-error with less coordination overheads
when the relative error bound is greater than 1.2.

In the future, we plan to improve PT-ISABB in the following aspects: firstly, we will
work for further enhancing the pruning efficiency by computing lower upper bounds in
the search phase; secondly, we will devote to improving the parallelism by combining the
algorithm with multi-search process [28]; finally, we will probe into rearranging the search
space with the initial lower bounds and upper bounds so as to find a better global upper
bound to speed up the systematic search.

Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

Page 41 of 42 50

Acknowledgements This research is funded by Chongqing Research Program of Basic Research and Fron-
tier Technology (No. cstc2017jcyjAX0030), Fundamental Research Funds for the Central Universities (No.
2018CDXYJSJ0026) and Graduate Research and Innovation Foundation of Chongqing (No. CYS17023).
We are also grateful to the reviewers of this article for their kind suggestions.

References

 1. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439),
509–512.

 2. Brito, I., Meisels, A., Meseguer, P., & Zivan, R. (2009). Distributed constraint satisfaction with par-
tially known constraints. Constraints, 14(2), 199–234.

 3. Burke, D. A., Brown, K. N., Dogru, M., & Lowe, B. (2007). Supply chain coordination through dis-
tributed constraint optimization. In Proceedings AAMAS workshop on distributed constraint reasoning
(DCR-07).

 4. Chechetka, A., & Sycara, K. (2006) No-commitment branch and bound search for distributed con-
straint optimization. In Proceedings of the 5th international joint conference on autonomous agents
and multiagent systems (pp. 1427–1429).

 5. Chen, Z., Deng, Y., Wu, T., & He, Z. (2018). A class of iterative refined Max-sum algorithms via
non-consecutive value propagation strategies. Autonomous Agents and Multi-Agent Systems, 32(6),
822–860.

 6. Chen, Z., He, C., He, Z., & Chen, M. (2018). BD-ADOPT: A hybrid DCOP algorithm with best-first
and depth-first search strategies. Artificial Intelligence Review, 50(2), 161–199.

 7. Chen, Z., Zhang, W., Deng, Y., Chen, D., & Li, Q. (2020). RMB-DPOP: Refining MB-DPOP by
reducing redundant inference. In Proceedings of the 19th international conference on autonomous
agents and multiagent systems (pp. 249–257).

 8. Dechter, R., & Rish, I. (2003). Mini-buckets: A general scheme for bounded inference. Journal of the
ACM (JACM), 50(2), 107–153.

 9. Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralised coordination of low-power
embedded devices using the Max-sum algorithm. In Proceedings of the 7th international joint confer-
ence on autonomous agents and multiagent systems (pp. 639–646).

 10. Fioretto, F., Pontelli, E., & Yeoh, W. (2018). Distributed constraint optimization problems and applica-
tions: A survey. Journal of Artificial Intelligence Research, 61, 623–698.

 11. Fioretto, F., Yeoh, W., & Pontelli, E. (2017) A multiagent system approach to scheduling devices in
smart homes. In Proceedings of the 16th international conference on autonomous agents and multia-
gent systems (pp. 981–989).

 12. Freuder, E. C., & Quinn, M. J. (1985). Taking advantage of stable sets of variables in constraint satis-
faction problems. In Proceedings of the 9th international joint conference on artificial intelligence (pp.
1076–1078).

 13. Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding for distributed COPs.
Journal of Artificial Intelligence Research, 34, 61–88.

 14. Gershman, A., Zivan, R., Grinshpoun, T., Grubshtein, A., & Meisels, A. (2008) Measuring distributed
constraint optimization algorithms. In Proceedings AAMAS workshop on distributed constraint rea-
soning (DCR-08)

 15. Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., & Meisels, A. (2013). Asymmetric distributed
constraint optimization problems. Journal of Artificial Intelligence Research, 47, 613–647.

 16. Grinshpoun, T., & Tassa, T. (2016). P-SyncBB: A privacy preserving branch and bound DCOP algo-
rithm. Journal of Artificial Intelligence Research, 57, 621–660.

 17. Grinshpoun, T., Tassa, T., Levit, V., & Zivan, R. (2019). Privacy preserving region optimal algorithms
for symmetric and asymmetric dcops. Artificial Intelligence, 266, 27–50.

 18. Hirayama, K., Miyake, K., Shiota, T., & Okimoto, T. (2019). DSSA+: Distributed collision avoidance
algorithm in an environment where both course and speed changes are allowed. TransNav. Interna-
tional Journal on Marine Navigation and Safety of Sea Transportation, 13(1), 117–123.

 19. Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem. In Interna-
tional conference on principles and practice of constraint programming (pp. 222–236).

 20. Hirayama, K., & Yokoo, M. (2005). The distributed breakout algorithms. Artificial Intelligence,
161(1–2), 89–115.

 21. Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the Sum-product algo-
rithm. IEEE Transactions on Information Theory, 47(2), 498–519.

 Autonomous Agents and Multi-Agent Systems (2020) 34:50

1 3

50 Page 42 of 42

 22. Léauté, T., & Faltings, B. (2013). Protecting privacy through distributed computation in multi-agent
decision making. Journal of Artificial Intelligence Research, 47, 649–695.

 23. Litov, O., & Meisels, A. (2017). Forward bounding on pseudo-trees for DCOPs and ADCOPs. Artifi-
cial Intelligence, 252, 83–99.

 24. Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for DCOP: A graphical-
game-based approach. In Proceedings of ISCA PDCS’04 (pp. 432–439).

 25. Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., & Varakantham, P. (2004) Taking DCOP to
the real world: Efficient complete solutions for distributed multi-event scheduling. In Proceedings of
the 3rd international joint conference on autonomous agents and multiagent systems (pp. 310–317).

 26. Modi, P. J., Shen, W. M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous distributed con-
straint optimization with quality guarantees. Artificial Intelligence, 161(1–2), 149–180.

 27. Monteiro, T. L., Pujolle, G., Pellenz, M. E., Penna, M. C., & Souza, R. D. (2012) A multi-agent
approach to optimal channel assignment in WLANS. In Wireless communications and networking con-
ference (WCNC) (pp. 2637–2642).

 28. Netzer, A., Grubshtein, A., & Meisels, A. (2012). Concurrent forward bounding for distributed con-
straint optimization problems. Artificial Intelligence, 193, 186–216.

 29. Nguyen, D. T., Yeoh, W., Lau, H. C., & Zivan, R. (2019). Distributed Gibbs: A linear-space sampling-
based DCOP algorithm. Journal of Artificial Intelligence Research, 64, 705–748.

 30. Okamoto, S., Zivan, R., & Nahon, A. (2016) Distributed breakout: Beyond satisfaction. In Proceedings
of the 25th international joint conference on artificial intelligence (pp. 447–453).

 31. Ottens, B., Dimitrakakis, C., & Faltings, B. (2017). DUCT: An upper confidence bound approach to
distributed constraint optimization problems. ACM Transactions on Intelligent Systems and Technology
(TIST), 8(5), 69.

 32. Petcu, A., & Faltings, B. (2005). Approximations in distributed optimization. In International confer-
ence on principles and practice of constraint programming (pp. 802–806). Berlin: Springer.

 33. Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In Pro-
ceedings of the 19th international joint conference on artificial intelligence (pp. 266–271).

 34. Petcu, A., & Faltings, B. (2006) ODPOP: An algorithm for open/distributed constraint optimization. In
Proceedings of the 21st AAAI conference on artificial intelligence (pp. 703–708).

 35. Petcu, A., & Faltings, B. (2007). MB-DPOP: A new memory-bounded algorithm for distributed
optimization. In Proceedings of the 20th international joint conference on artificial intelligence (pp.
1452–1457).

 36. Ramchurn, S. D., Vytelingum, P., Rogers, A., & Jennings, N. (2011). Agent-based control for decen-
tralised demand side management in the smart grid. In Proceedings of the 10th international confer-
ence on autonomous agents and multiagent systems (pp. 5–12).

 37. Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate decentralised
coordination via the Max-sum algorithm. Artificial Intelligence, 175(2), 730–759.

 38. Sultanik, E. A., Modi, P. J., & Regli, W. C. (2007). On modeling multiagent task scheduling as a dis-
tributed constraint optimization problem. In Proceedings of the 20th international joint conference on
artificial intelligence (pp. 1531–1536).

 39. Vinyals, M., Rodriguez-Aguilar, J. A., & Cerquides, J. (2011). Constructing a unifying theory of
dynamic programming DCOP algorithms via the generalized distributive law. Autonomous Agents and
Multi-Agent Systems, 22(3), 439–464.

 40. Yeoh, W., Felner, A., & Koenig, S. (2010). BnB-ADOPT: An asynchronous branch-and-bound DCOP
algorithm. Journal of Artificial Intelligence Research, 38, 85–133.

 41. Yeoh, W., & Yokoo, M. (2012). Distributed problem solving. AI Magazine, 33(3), 53.
 42. Zhang, W., Wang, G., Xing, Z., & Wittenburg, L. (2005). Distributed stochastic search and distributed

breakout: Properties, comparison and applications to constraint optimization problems in sensor net-
works. Artificial Intelligence, 161(1–2), 55–87.

 43. Zivan, R., & Meisels, A. (2006). Message delay and DisCSP search algorithms. Annals of Mathemat-
ics and Artificial Intelligence, 46(4), 415–439.

 44. Zivan, R., Parash, T., Cohen, L., Peled, H., & Okamoto, S. (2017). Balancing exploration and exploita-
tion in incomplete Min/Max-sum inference for distributed constraint optimization. Autonomous Agents
and Multi-Agent Systems, 31(5), 1165–1207.

 45. Zivan, R., Parash, T., Cohen-Lavi, L., & Naveh, Y. (2020). Applying Max-sum to asymmetric distrib-
uted constraint optimization problems. Autonomous Agents and Multi-Agent Systems, 34(1), 1–29.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	A hybrid tree-based algorithm to solve asymmetric distributed constraint optimization problems
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Distributed constraint optimization problems
	3.2 Asymmetric distributed constraint optimization problems
	3.3 Pseudo tree
	3.4 DPOP and ADPOP

	4 PT-ISABB
	4.1 Motivation
	4.2 Inference phase: a tailored version of ADPOP for ADCOPs
	4.3 Search phase: a variant of SyncABB-1ph on a pseudo tree
	4.4 Privacy of PT-ISABB
	4.5 Trace

	5 Theoretic results
	5.1 Correctness
	5.2 Lower bound tightness
	5.3 Complexity

	6 Bounded error approximations
	6.1 Absolute error Mechanism
	6.2 Relative error mechanism

	7 Experimental evaluations
	7.1 Experimental configurations
	7.2 Performance metrics
	7.3 Performance comparisons: the optimal variants of PT-ISABB
	7.4 Performance comparisons: PT-ISABB and its competitors
	7.5 Performance comparisons: the suboptimal variants of PT-ISABB-D

	8 Conclusion
	Acknowledgements
	References

