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Abstract
Incomplete GDL-based algorithms including Max-
sum and its variants are important methods for
multi-agent optimization. However, they face a
significant scalability challenge as the computa-
tional overhead grows exponentially with respect
to the arity of each utility function. Generic Do-
main Pruning (GDP) technique reduces the compu-
tational effort by performing a one-shot pruning to
filter out suboptimal entries. Unfortunately, GDP
could perform poorly when dealing with dense lo-
cal utilities and ties which widely exist in many
domains. In this paper, we present several novel
sorting-based acceleration algorithms by alleviat-
ing the effect of densely distributed local utilities.
Specifically, instead of one-shot pruning in GDP,
we propose to integrate both search and pruning
to iteratively reduce the search space. Besides, we
cope with the utility ties by organizing the search
space of tied utilities into AND/OR trees to en-
able branch-and-bound. Finally, we propose a dis-
cretization mechanism to offer a tradeoff between
the reconstruction overhead and the pruning effi-
ciency. We demonstrate the superiorities of our al-
gorithms over the state-of-the-art from both theo-
retical and experimental perspectives.

1 Introduction
Distributed Constraint Optimization Problems (DCOPs)
[Modi et al., 2005; Fioretto et al., 2018] are a fundamen-
tal model for multi-agent optimization and coordination, in
which agents cooperatively find assignments to optimize a
global objective. DCOPs have been successfully applied to
model many real-world problems where information and con-
trols are inherently distributed among agents such as dis-
tributed scheduling [Hirayama et al., 2019; Li et al., 2016],
smart-grids [Fioretto et al., 2017] and radio frequency alloca-
tion [Monteiro et al., 2012].

Complete algorithms for DCOPs [Hirayama and Yokoo,
1997; Petcu and Faltings, 2005; Modi et al., 2005; Yeoh
et al., 2010; Netzer et al., 2012; Litov and Meisels, 2017]
aim to find the optimal solution but incur exponential co-
ordination overheads since solving DCOPs is NP-Hard. In

contrast, incomplete algorithms [Maheswaran et al., 2004;
Zhang et al., 2005; Okamoto et al., 2016; Ottens et al., 2017;
Hoang et al., 2018; Nguyen et al., 2019] trade the solution
quality for smaller computational efforts and can scale up to
large problems.

Max-sum and its variants [Farinelli et al., 2008; Rogers et
al., 2011; Zivan et al., 2017; Chen et al., 2018] are popular in-
complete algorithms built upon the Generalized Distributive
Law (GDL) [Aji and McEliece, 2000] and have been applied
to many real-world domains due to their ability of directly
handling n-ary constraints. However, these algorithms face a
significant scalability challenge. In more detail, Max-sum im-
plements belief propagation on a factor graph [Kschischang
et al., 2001] by optimizing the sum of local utility functions
and corresponding query messages. As a result, the compu-
tational effort grows exponentially with respect to the arity of
each utility function, which prohibits Max-sum from scaling
up to large systems.

Therefore, a number of acceleration algorithms for GDL-
based algorithms were proposed to improve their scalability
and can be generally divided into BnB-based and sorting-
based algorithms. BnB-based algorithms including BnB-MS
[Stranders et al., 2009] and BnB-FMS [Macarthur et al.,
2011] construct an estimation for each partial assignment and
employ branch-and-bound to reduce the search space. Never-
theless, these algorithms compute estimations by either brute-
force or domain-specific knowledge, which limits their gen-
erality. Recently, FDSP [Chen et al., 2019] was proposed
to implement generic branch-and-bound by using dynamic-
programming to construct domain-agnostic estimations.

On the other hand, sorting-based algorithms including G-
FBP [Kim and Lesser, 2013] and GDP [Khan et al., 2018]
require (partially) sorted local utilities to perform accelera-
tion. Specifically, G-FBP only sorts for top cd

n−1
2 values of

the search space and presumes that the highest utility can be
found in the range. Here, c is a constant, d is the maximal
domain size and n is the arity of a utility function, respec-
tively. However, the algorithm has to perform an exhaustive
traverse when the assumption fails. In contrast, GDP con-
structs a completely sorted local utility list for each assign-
ment of each variable. Then it uses the entry with the highest
local utility to compute a one-shot lower bound to prune sub-
optimal entries.

However, the existing methods could perform poorly when
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dealing with dense local utilities. In more detail, FDSP would
not be able to find a high-quality lower bound promptly when
utility functions are highly structured since it sequentially ex-
hausts the whole search space. On the other hand, although
GDP attempts to find a more efficient one by considering
the local utilities, the one-shot nature still cannot guarantee
the quality. Additionally, the pruned range returned by GDP
would contain many entries whose local utilities are close to
each other, which also results in a poorly pruned rate. Unfor-
tunately, dense utility functions and ties are very common in
real-world scenarios. For example, in a NetRad system [Kim
et al., 2011] the utility of scanning a weather phenomenon
does not increase linearly w.r.t. the scanning quality. As a
result, the utility function could be extremely dense when the
scanning quality is high.

In this paper, we aim to cope with dense local utilities from
the perspectives of both bound quality and search space orga-
nization and develop more efficient sorting-based accelera-
tion algorithms. To ensure bound quality, we integrate both
search and pruning by iteratively updating the lower bound.
Then we overcome the inability of pruning tied entries in do-
main pruning techniques by organizing the search space of
these entries into AND/OR trees to enable efficient branch-
and-bound. Finally, we discretize the utility range to balance
the reconstruction overhead and the pruning efficiency and to
further reduce the sorting overhead. We theoretically show
our algorithms are sound and outperform GDP in terms of
pruning efficiency. Our extensive empirical evaluations also
confirm the great superiorities over the state-of-the-art.

2 Backgrounds
In this section, we review preliminaries including DCOPs,
Max-sum and GDP.

2.1 Distributed Constraint Optimization Problems
A Distributed Constraint Optimization Problem (DCOP)
[Modi et al., 2005] can be defined by a tuple 〈A,X,D, F 〉
where A = {a1, . . . , ap} is the set of agents, X =
{x1, . . . , xq} is the set of variables, D = {D1, . . . , Dq} is
the set of discrete domains and F = {f1, . . . , fm} is the set
of utility functions. Each variable xi takes a value from do-
main Di and each function fj : xj → R≥0 specifies a utility
for each possible combination of involved variables xj ⊆ X .
For the sake of simplicity, we assume that each agent controls
a variable (i.e., p = q). The objective of a DCOP is to find an
assignment for each variable to maximize the global utility.
That is,

X∗ = argmaxX
∑

fj(xj)∈F
fj(xj)

2.2 Max-sum
Max-sum [Farinelli et al., 2008] is a GDL-based message-
passing incomplete algorithm for DCOPs operating on a fac-
tor graph. A factor graph [Kschischang et al., 2001] is a
bipartite graph representation to a DCOP, which consists of
variable nodes representing variables and function nodes rep-
resenting utility functions in the DCOP, respectively. Fig.1

Figure 1: A factor graph

Figure 2: A part of a NetRad system and local interactions

presents a factor graph consisting of 3 function nodes and 5
variable nodes.

Max-sum implements belief propagation via query mes-
sages and response messages. Formally, the query message
from variable node xi ∈ xj to function node fj is given by

qxi→fj (xi) =
∑

fk∈Nxi
\{fj}

rfk→xi
(xi)− α (1)

where Nxi
is neighboring function nodes of xi, rfk→xi

(xi)
is the response message from fk and α is a normalization
term to control the magnitude of each entry in the message.
The response message from function node fj to variable node
xi ∈ xj is given by

rfj→xi
(xi) = max

xj\{xi}

fj(xj) +
∑

xk∈xj\{xi}

qxk→fj (xk)

 (2)

A variable node xi makes a decision by choosing the assign-
ment with the highest utility under the current belief. That
is,

x∗i = argmaxvi∈Di

∑
fk∈Nxi

rfk→xi(vi)

2.3 Generic Domain Pruning
It can be concluded that the computational overhead of Eq.(2)
is exponential in the arity of utility function fj , which pro-
hibits Max-sum from scaling up to large systems. Generic
Domain Pruning (GDP) [Khan et al., 2018] is the state-of-
the-art acceleration algorithm operating on completely sorted
utility functions. In more detail, for each variable xi ∈
xj and assignment vi ∈ Di, fj computes an ordered list
SortedEntriesi(vi) according to its local utilities, where
each entry e ∈ SortedEntriesi(vi) is an assignment to xj

such that xi = vi. When computing the utility for xi = vi, fj
constructs a one-shot lower bound lb and the message upper
bound msgUB. That is,

lb = fj(e0) +
∑

xk∈xj\{xi}
qxk→fj (e0[xk])
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(a) The traces of GDP when computing for x1 = L

(b) The traces of GDP when computing for x1 = R

Figure 3: The traces of GDP when applied to the example in Fig.2

msgUB =
∑

xk∈xj\{xi}
maxxk

qxk→fj (xk)

where e0 is the first element in SortedEntriesi(vi) and
e0[xk] is the assignment of xk in entry e0. Then fj re-
turns a pruned range P ⊆ SortedEntriesi(vi) such that
fj(e) +msgUB ≥ lb, ∀e ∈ P .

3 Motivation
In this section, we show GDP could fail to reduce the search
space when there exist dense local utilities. Consider a part
of a NetRad system [Kim et al., 2011] shown in the left-
hand side of Fig.2. There are four radars and a weather phe-
nomenon P . For the sake of simplicity, we assume that each
radar can only scan one of two sectors (i.e., {L,R} for x1 and
x3, {U,D} for x2 and x4). The utility for a radar xi scanning
P depends on the distance between xi and P . Assume that
the utilities for scanning P by individual radars are 0.9, 0.6,
0.4 and 0.8, respectively. Finally, we consider the task as non-
pinpointing. That is, given the scanning strategies of radars,
the aggregated utility is the maximal one among the individ-
ual radars that scan P .

Given the incoming query messages shown in the right-
hand side of Fig.2, we are going to compute the response mes-
sage for radar x1. It can be concluded from Fig.3 that GDP
could perform poorly due to dense local utilities and ties.
More specifically, when computing the utility for x1 = L,
the one-shot lower bound is 1.5 and the message upper bound
is 1.1. As a result, any entry with local utility less than 0.4
is filtered out. However, since the local utilities are densely
distributed in the range of [0.4, 0.8], GDP can only prune one
entry and result in a poorly pruned rate of 12.5%.

The pathology could be exacerbated when computing for
x1 = R where all the local utilities are the same. In this case

Algorithm 1: GD2P for function node fj

When Initialization:
1 foreach xi ∈ xj do
2 foreach vi ∈ Di do
3 SortedEntriesi(vi)← arg sort

fj(xi = vi, ·) in non-increasing order
When computing a response message for xi ∈ xj:

4 msgUB ←
∑

xk∈xj\{xi}
maxvk∈Dk qxk→fj (vk)

5 foreach vi ∈ Di do
6 e← the first element in SortedEntriesi(vi)
7 util∗ ← −∞, lb← −∞
8 while e6=NIL and fj(e) ≥ lb do
9 u← fj(e) +

∑
xk∈xj\{xi}

qxk→fj (e[xk])

10 util∗ ← max(util∗, u)
11 lb← util∗ −msgUB
12 e← the next element in SortedEntriesi(vi)
13 rfj→xi(vi)← util∗

14 return rfj→xi(xi)

GDP still cannot prune any entry even if we construct the
most efficient lower bound according to {R,U,R,D}. That
is because given a linearly structured search space GDP can-
not discard suboptimal entries with the same local utility in
advance.

In fact, dense local utilities are ubiquitous in real-world
scenarios due to the law of diminishing marginal utility.
Therefore, we aim to develop more efficient sorting-based ac-
celeration algorithms for incomplete GDL-based algorithms
by alleviating the negative effect of dense local utilities.

4 Proposed Methods
In this section, we first present our proposed algorithms for
accelerating Max-sum. Then we briefly discuss the modifica-
tions when applying our methods to other versions of belief
propagation.

4.1 GD2P
As demonstrated earlier, the quality of the lower bound is
the key of effective pruning, especially when local utilities
are dense. Therefore, we propose to integrate both search
and pruning to iteratively reduce the search space. Thus, the
pruning is no longer a one-shot procedure and the scheme is
referred as Generic Dynamic Domain Pruning (GD2P). Alg.1
presents the sketch of GD2P.

Similar to GDP, GD2P also begins with complete sorting of
each utility function (line 1-3). When computing a response
message for a variable node xi ∈ xj, it searches for the high-
est utility for each assignment vi ∈ Di by exhausting the
sorted entries whose local utility is no less than the running
lower bound lb in a sequential order (line 8-13). Here, the
lower bound is updated whenever a higher utility is found
(line 10-11).

Next, we theoretically show its correctness and superiority
over GDP.

Theorem 1. GD2P guarantees the optimality of Eq.(2).
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Algorithm 2: ART-GD2P for function node fj

When Initialization:
1 foreach xi ∈ xj do
2 foreach vi ∈ Di do
3 SortedUtili(vi)← all distinct utilities of

fj(xi = vi, ·)
4 sort SortedUtili(vi) in descending order
5 foreach u ∈ SortedUtili(vi) do
6 treesi(vi, u)← build an AND/OR tree

representing all entries E such that
fj(e) = u, ∀e ∈ E, e[xi] = vi

When computing a response message for xi ∈ xj:
7 msgUB ←

∑
xk∈xj\{xi}

maxvk∈Dk qxk→fj (vk)

8 foreach vi ∈ Di do
9 u← the first element in SortedUtili(vi)

10 util∗ ← −∞, lb← −∞
11 while u6=NIL and u ≥ lb do
12 t← treesi(vi, u)
13 util← Branch-and-bound(t, xi, util

∗)
14 util∗ ← max(util∗, util)
15 lb← util∗ −msgUB
16 u← the next element in SortedUtili(vi)
17 rfj→xi(vi)← util∗

18 return rfj→xi(xi)

Proof. Assume that the optimal entry e∗ is pruned by GD2P
when xi = vi. According to line 4, 8 and 11 of Alg.1, we
have

fj(e
∗) < lb = util∗ −msgUB

where util∗ is the highest utility returned by GD2P. Combing
with query messages, we have

fj(e
∗) +Qi(e

∗) < util∗ −msgUB +Qi(e
∗)

where Qi(e∗) =
∑
xk∈xj\{xi} qxk→fj (e

∗[xk]). Since∑
xk∈xj\{xi}

qxk→fj (e
∗[xk]) ≤

∑
xk∈xj\{xi}

max
vk∈Dk

qxk→fj (vk)

it must have

fj(e
∗) +

∑
xk∈xj\{xi}

qxk→fj (e
∗[xk]) < util∗

which is contradictory to the assumption. Thus, GD2P guar-
antees the optimality of Eq.(2).

Theorem 2. GD2P never explores the entries pruned by
GDP.

Proof. Assume that GD2P explores an entry e which is
pruned by GDP. Denote the lower bound constructed by GDP
as lbGDP and the running lower bound in GD2P as lbGD

2P .
According to line 8 of Alg.1, since e is explored by GD2P but
pruned by GDP, it must have

lbGDP −
∑

xk∈xj\{xi}

max
vk∈Dk

qxk→fj (vk) > fj(e) ≥ lbGD
2P

which is contradictory to line 10-11.

Figure 4: AND/OR trees for x1 = L when applied to Fig.2

4.2 ART-GD2P
Both GDP and GD2P perform poorly when there are ties
in utility functions since they use a linear structure to orga-
nize the search space. As a result, they have to exhaust all
the tied entries whose local utility is no less than the lower
bound. Thus, we propose to organize the search space of
tied entries into an AND/OR tree so as to enable branch-and-
bound to reduce the search space. The scheme is referred as
And/oR Tree-based GD2P (ART-GD2P) and Alg.2 presents
the sketch.

Different than completely sorting a utility function in GDP
and GD2P, ART-GD2P only sorts for distinct local utilities for
each assignment of each variable in the preprocessing phase
(line 1-4). After that, it builds an AND/OR tree for the entries
with the same local utility (line 5-6). Note that the construc-
tion of AND/OR trees can be done by a sequential iteration
over the utility function as the trees can be built incremen-
tally. Similar to GD2P, it maintains a running lower bound
lb and terminates whenever the local utility is less than the
lower bound (line 11-16).

It is noteworthy that instead of iterating over the sorted
entries in GDP and GD2P, ART-GD2P iterates over the dis-
tinct sorted utilities and performs branch-and-bound to re-
duce the search space of tied entries. In more detail, for
each distinct local utility u, ART-GD2P exhausts the corre-
sponding AND/OR tree treei(vi, u) by constructing an esti-
mation ubPA for each partial assignment PA and discarding
the partial assignment whenever the estimation is less than the
known highest utility (line 12-13). Formally, the estimation
is given by

ubPA = u+
∑

xk∈PA
qxk→fj (PA[xk]) +

∑
xk /∈PA

max
vk∈Dk

qxk→fj (vk)

Take Fig.2 as an example. Given x1 = L, ART-GD2P
first sorts distinct local utilities {0.8, 0.6, 0.4, 0} and builds an
AND/OR tree for each of them. Fig.4 presents the AND/OR
trees. Here, we omit the AND/OR nodes for x1. When
computing utility for x1 = L, ART-GD2P first performs
depth-first branch-and-bound to exhaust the AND/OR tree
tree1(L, 0.8). It can be concluded that the algorithm ter-
minates after reaching the first two complete assignments
{L,U,L,D} and {L,U,R,D} since it finds the highest util-
ity 1.9, which results in a pruned rate of 75%.
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We now show its correctness and its superiority over GD2P.
Theorem 3. ART-GD2P guarantees the optimality of Eq.(2).

Proof. There are two lines that prune the search space, i.e.,
line 11 and line 13 of Alg.2. We have shown that line 11
cannot prune the highest utility in Theorem 1. Thus we only
need to show that line 13 never prunes the optimal assign-
ment. Assume that the optimal full assignment A∗ is pruned
by line 13. Thus it must exist a prefix PA ⊂ A∗ such that

ubPA < util∗

where util∗ is the highest utility found by ART-GD2P. In fact,

ubPA = fj(A
∗) +

( ∑
xk∈PA

qxk→fj (PA[xk])

+
∑

xk /∈PA

max
vk∈Dk

qxk→fj (vk)


≥ fj(A∗) +

∑
xk∈xj\{xi}

qxk→fj (A
∗[xk])

Thus we have fj(A∗) +
∑

xk∈xj\{xi}
qxk→fj (A

∗[xk]) < util∗,

which is contradictory to the definition of A∗. The optimality
is hereby guaranteed.

Theorem 4. ART-GD2P never explores the assignments
pruned by GD2P.

Proof. Assume that ART-GD2P explores a full assignment A
which is pruned by GD2P. Denote the lower bound of ART-
GD2P when exploring A as lbART and the lower bound of
GD2P when pruning A as lbGD

2P , respectively. It must have

lbGD
2P > fj(A) ≥ lbART (3)

Since GD2P sequentially exhausts the search space, it must
exist an assignment A′ ≺ A such that

lbGD
2P = fj(A

′)

+
∑

xk∈xj\{xi}

qxk→fj (A
′[xk])− max

vk∈Dk

qxk→fj (vk)

> fj(A)
(4)

which indicates that fj(A′) > fj(A). On the other hand,
ART-GD2P explores distinct local utilities in a descending
order (line 4, 9 and 15 of Alg.2). According to Eqs.(3-4), A′
produces a higher utility thanA. Thus, ART-GD2P must have
explored an assignment A′′ such that

fj(A
′′) +

∑
xk∈xj\{xi}

qxk→fj (A
′′[xk]) ≥ fj(A′)

+
∑

xk∈xj\{xi}

qxk→fj (A
′[xk])

which implies

lbART ≥ fj(A′) +
∑

xk∈xj\{xi}

qxk→fj (A
′
xk
)− max

vk∈Dk

qxk→fj (vk)

= lbGD
2P

(5)

Figure 5: ART-GD2P operating on extremely dense utilities

Therefore, Eq.(5) is contradictory to Eq.(3), which concludes
the theorem.

4.3 Discretization Mechanism
Since ART-GD2P builds an AND/OR tree for each distinct
local utility, each tree would correspond to a small search
space when the local utilities are extremely dense, which
would incur solution reconstructions. Consider the example
in Fig.5. Assume that all the assignments with prefix {F, T}
are pruned by line 13 and the highest utility corresponds to
assignment {F, F, F, F}. Obviously, ART-GD2P has to visit
the suboptimal partial assignment {F, T} for 4 times in this
case. Besides, a large number of distinct local utilities also
result in a high sorting overhead.

We overcome the problems by introducing a discretization
mechanism. That is, instead of sorting and building AND/OR
trees for distinct local utilities directly, we first group the util-
ities into several discrete slots. Then all the operations are
applied to these slots. In more detail, we first divide the range
of the local utilities into disjoint slots by a step size of t. Then
we group all the utilities {u|val(si)− t < u ≤ val(si)} into
slot si ∈ S. Here, val(·) returns the maximal utilities in a
slot, which is used to perform pruning in line 11.

Finally, it is worth mentioning that ART-GD2P with the
discretization mechanism offers a tradeoff between domain
pruning and reconstruction overhead. In more detail, a small
t produces fine-grained slots and could prune the suboptimal
utilities promptly (line 11). In contrast, a large t tends to build
AND/OR trees corresponding to large search spaces, which
reduces the reconstruction overhead.

4.4 Generalizing to Other GDL-based Algorithms
We note that our proposed algorithms can be easily adapted
to the variants of Max-sum and other versions of belief prop-
agation. For example, we could adapt our algorithms to speed
up Max-product [Weiss and Freeman, 2001] by changing the
summation operations to the product operations (i.e., line 4,
9 and 11 of Alg. 1, line 7, 13 and 15 of Alg. 2).

When combining with Max-sum variants like damped
Max-sum [Cohen et al., 2020], bounded Max-sum [Rogers
et al., 2011] and Max-sum AD [Zivan et al., 2017], our al-
gorithms require few modifications since these variants still
use Eq.(2) to compute response messages. However, there
are variants which do not exactly follow Eq.(2). For example,
a function node in Max-sum ADSSVP [Chen et al., 2018]
needs to consider the assignments of some neighbors when
computing the maximal utility. In this case, an additional
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(a) Small domain, low arity (b) Small domain, high arity (c) Large domain, low arity (d) Large domain, high arity

Figure 6: Performance comparison on sparse problems

(a) Small domain, low arity (b) Small domain, high arity (c) Large domain, low arity (d) Large domain, high arity

Figure 7: Performance comparison on dense problems

verification procedure needs to be introduced to filter out the
incompatible entries.

5 Experimental Evaluations
We empirically evaluate the performance of GDP, FDSP and
our proposed algorithms when accelerating Max-sum on both
random DCOPs and NetRad systems. The performance met-
rics we consider include pruned rate [Khan et al., 2018], con-
current speedup, which is the improvement of the number of
concurrent basic operations over vanilla Max-sum, and run-
time. Here, basic operations are the access to query mes-
sages. For each of the configuration, we generate 50 random
instances and terminate algorithms after 250 iterations, re-
porting the averaged metrics and standard errors as the results
and the confidence intervals, respectively.

5.1 Results on Random DCOPs
We generate high arity and low arity factor graphs by uni-
formly selecting an arity for each function node from [2,5]
and [5,8], respectively. Further, we generate large domain
problems and small domain problems by uniformly selecting
a domain size from [5,8] and [2,5] for each variable, respec-
tively. Finally, we consider the factor graphs with the variable
tightness [Chen et al., 2019] between 0.1 and 0.5 as sparse
graphs and the ones with the variable tightness between 0.5
and 0.9 as dense graphs. The utilities of each function node
are uniformly sampled from (0,1000). For ART-GD2P, we
use an empirically tuned step size t = 50.

Fig.6 presents the results when solving sparse problems. It
can be seen that FDSP performs worse than ART-GD2P. That
is due to the fact that FDSP performs a depth-first search on

a huge AND/OR tree without any a priori knowledge. On
the other hand, our ART-GD2P performs branch-and-bound
on a sorted array of AND/OR trees and can find an efficient
lower bound more promptly, reducing about 95% - 99.9% of
concurrent operations, which demonstrates great superiorities
over the other competitors. Besides, our GD2P maintains a
running lower bound and significantly improves the perfor-
mance of GDP, which highlights the importance of tight lower
bounds in domain pruning techniques.

Fig.7 presents the results when solving dense problems.
Compared to the ones in sparse problems, the variable nodes
in these problems are over-constrained due to high variable
tightness. As a result, the query messages could be multi-
modal and the one-shot lower bound constructed by GDP is
not necessarily efficient. Therefore, GDP performs poorly
and is strictly dominated by other competitors. Besides, it
is interesting to find that compared to the results on sparse
problems, the gaps between GD2P and FDSP are widened.
In addition to the multimodality of query messages, another
reason for this is that FDSP performs a depth-first search
on AND/OR trees, which significantly reduces solution re-
constructions. Finally, combing both domain pruning and
branch-and-bound techniques, our proposed ART-GD2P ex-
hibits the best performance on all of the tasks, which demon-
strates its merits on general n-ary DCOPs.

To examine the performance on the problems with dense
local utilities, we consider the problems with 100 function
nodes, low arity, large domain size and the variable tightness
of 0.5. For each problem, there are a number of dense func-
tion nodes whose utilities are selected according to a power-
law distribution. More specifically, the probability of select-
ing a utility u ∈ (0, 1000) is proportional to (1000 − u)−α.
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Figure 8: Performance comparison on the problems with dense local
utilities

(a) 48 radars (b) 96 radars

Figure 9: Performance comparison on NetRad systems

In our experiments, we set α = 1.1. Fig.8 presents the per-
formance comparison in terms of the pruned rate.

It can be seen that the performance of GDP decreases by
near 20% w.r.t. growing dense function nodes, which indi-
cates that GDP is sensitive to dense utility functions. That is
due to the fact that the pruned range could contain many en-
tries since the utilities are close to each other in dense utility
functions. On the other hand, although GD2P also relies on
domain pruning to reduce the search space, it is much more
robust to the presence of dense function nodes due to the it-
eratively tighten lower bound. In fact, with the growing of
dense function nodes its performance only drops by 4%. Fi-
nally, dense function nodes can hardly deteriorate the per-
formance of ART-GD2P since it can still perform effective
branch-and-bound according to the query messages when lo-
cal utilities are not distinguishable.

5.2 Results on NetRad Systems
We consider the NetRad systems with 48 and 96 radars which
are arranged into 6×8 and 8×12 grids, respectively. Weather
phenomena with different sizes, weights and types are ran-
domly generated across grids. Each phenomenon is associ-
ated with a utility function defined according to [Pepyne et
al., 2007]. In this set of experiments, the maximal utility of a
function is 1, the maximal arity is 4 and the domain size of a
variable can go up to 15. Fig.9 gives the experimental results.

It can be concluded that GDP performs poorly and the run-
time grows quickly w.r.t. the number of phenomena in both
cases. In contrast, our proposed GD2P and ART-GD2P sig-
nificantly outperform GDP, only requiring about a half and
one-eighth of its runtimes, respectively. On the other hand, al-
though FDSP outperforms domain pruning variants, it is still
dominated by ART-GD2P. This is due to the fact that with

the sorted AND/OR trees our proposed ART-GD2P can find a
high-quality lower bound quickly despite of highly-structured
utility functions. Finally, ART-GD2P with a large t reduces
the runtimes in both preprocessing phase and pruning phase,
which demonstrates the necessity of the discretization mech-
anism.

6 Conclusion
In this paper, we demonstrate that the presence of dense util-
ity functions or utility ties would deteriorate the performance
of GDP. To alleviate the negative effect of densely distributed
local utilities, we propose to iteratively update the lower
bound and organize the tied entries to AND/OR trees. Finally,
we present a discretization mechanism which offers a tradeoff
between the reconstruction overhead and pruning efficiency.
We theoretically show their correctness and superiorities over
GDP. Our empirical evaluations also demonstrate their effec-
tiveness on both synthetic and realistic benchmarks.

We consider two lines of future work. First, ART-GD2P re-
lies on an empirically tuned step size t and uninformed depth-
first search, which could be undesirable in real-world appli-
cations. Therefore, heuristics for determining t and mecha-
nisms for improving pruning ability need to be further inves-
tigated. Second, we plan to extend our work to cope with
changing utility functions in a dynamic environment.
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